Source code for grizli.utils

"""
Dumping ground for general utilities
"""
import os
import shutil
import glob
import inspect
from collections import OrderedDict
import warnings
import itertools
import logging

import astropy.io.fits as pyfits
import astropy.wcs as pywcs
import astropy.table

import numpy as np

import astropy.units as u

from sregion import SRegion, patch_from_polygon

from . import GRIZLI_PATH
from .constants import JWST_DQ_FLAGS, KMS, FLAMBDA_CGS, FNU_CGS

# character to skip clearing line on STDOUT printing
NO_NEWLINE = "\x1b[1A\x1b[1M"

# R_V for Galactic extinction
MW_RV = 3.1

MPL_COLORS = {
    "b": "#1f77b4",
    "orange": "#ff7f0e",
    "g": "#2ca02c",
    "r": "#d62728",
    "purple": "#9467bd",
    "brown": "#8c564b",
    "pink": "#e377c2",
    "gray": "#7f7f7f",
    "olive": "#bcbd22",
    "cyan": "#17becf",
}

# sns.color_palette("husl", 8)
SNS_HUSL = {
    "r": (0.9677975592919913, 0.44127456009157356, 0.5358103155058701),
    "orange": (0.8087954113106306, 0.5634700050056693, 0.19502642696727285),
    "olive": (0.5920891529639701, 0.6418467016378244, 0.1935069134991043),
    "g": (0.19783576093349015, 0.6955516966063037, 0.3995301037444499),
    "sea": (0.21044753832183283, 0.6773105080456748, 0.6433941168468681),
    "b": (0.22335772267769388, 0.6565792317435265, 0.8171355503265633),
    "purple": (0.6423044349219739, 0.5497680051256467, 0.9582651433656727),
    "pink": (0.9603888539940703, 0.3814317878772117, 0.8683117650835491),
}

GRISM_COLORS = {
    "G800L": (0.0, 0.4470588235294118, 0.6980392156862745),
    "G102": (0.0, 0.6196078431372549, 0.45098039215686275),
    "G141": (0.8352941176470589, 0.3686274509803922, 0.0),
    "none": (0.8, 0.4745098039215686, 0.6549019607843137),
    "G150": "k",
    "F277W": (0.0, 0.6196078431372549, 0.45098039215686275),
    "F356W": (0.8352941176470589, 0.3686274509803922, 0.0),
    "F444W": (0.8, 0.4745098039215686, 0.6549019607843137),
    "F250M": "lightblue",
    "F300M": "steelblue",
    "F335M": "cornflowerblue",
    "F360M": "royalblue",
    "F410M": (0.0, 0.4470588235294118, 0.6980392156862745),
    "F430M": "sandybrown",
    "F460M": "lightsalmon",
    "F480M": "coral",
    "G280": "purple",
    "F090W": (0.0, 0.4470588235294118, 0.6980392156862745),
    "F115W": (0.0, 0.6196078431372549, 0.45098039215686275),
    "F150W": (0.8352941176470589, 0.3686274509803922, 0.0),
    "F140M": (0.8352941176470589, 0.3686274509803922, 0.0),
    "F158M": (0.8352941176470589, 0.3686274509803922, 0.0),
    "F200W": (0.8, 0.4745098039215686, 0.6549019607843137),
    "F140M": "orange",
    "BLUE": "#1f77b4",  # Euclid
    "RED": "#d62728",
    "CLEARP": "b",
}

GRISM_MAJOR = {
    "G102": 0.1,
    "G141": 0.1,  # WFC3/IR
    "G800L": 0.1,  # ACS/WFC
    "F090W": 0.1,
    "F115W": 0.1,
    "F150W": 0.1,  # NIRISS
    "F140M": 0.1,
    "F158M": 0.1,
    "F200W": 0.1,
    "F277W": 0.2,
    "F356W": 0.2,
    "F444W": 0.2,  # NIRCam
    "F250M": 0.1,
    "F300M": 0.1,
    "F335M": 0.1,
    "F360M": 0.1,
    "F410M": 0.1,
    "F430M": 0.1,
    "F460M": 0.1,
    "F480M": 0.1,
    "BLUE": 0.1,
    "RED": 0.1,  # Euclid
    "GRISM": 0.1,
    "G150": 0.1,  # Roman
}

GRISM_LIMITS = {
    "G800L": [0.545, 1.02, 40.0],  # ACS/WFC
    "G280": [0.2, 0.4, 14],  # WFC3/UVIS
    "G102": [0.77, 1.18, 23.0],  # WFC3/IR
    "G141": [1.06, 1.73, 46.0],
    "GRISM": [0.98, 1.98, 11.0],  # WFIRST/Roman
    "G150": [0.98, 1.98, 11.0],
    "F090W": [0.76, 1.04, 45.0],  # NIRISS
    "F115W": [0.97, 1.32, 45.0],
    "F140M": [1.28, 1.52, 45.0],
    "F158M": [1.28, 1.72, 45.0],
    "F150W": [1.28, 1.72, 45.0],
    "F200W": [1.68, 2.30, 45.0],
    "F140M": [1.20, 1.60, 45.0],
    "CLEARP": [0.76, 2.3, 45.0],
    "F277W": [2.5, 3.2, 20.0],  # NIRCAM
    "F356W": [3.05, 4.1, 20.0],
    "F444W": [3.82, 5.08, 20],
    "F250M": [2.4, 2.65, 20],
    "F300M": [2.77, 3.23, 20],
    "F335M": [3.1, 3.6, 20],
    "F360M": [3.4, 3.85, 20],
    "F410M": [3.8, 4.38, 20],
    "F430M": [4.1, 4.45, 20],
    "F460M": [4.5, 4.8, 20],
    "F480M": [4.6, 5.05, 20],
    "BLUE": [0.8, 1.2, 10.0],  # Euclid
    "RED": [1.1, 1.9, 14.0],
}

# DEFAULT_LINE_LIST = ['PaB', 'HeI-1083', 'SIII', 'OII-7325', 'ArIII-7138', 'SII', 'Ha+NII', 'OI-6302', 'HeI-5877', 'OIII', 'Hb', 'OIII-4363', 'Hg', 'Hd', 'H8','H9','NeIII-3867', 'OII', 'NeVI-3426', 'NeV-3346', 'MgII','CIV-1549', 'CIII-1908', 'OIII-1663', 'HeII-1640', 'NIII-1750', 'NIV-1487', 'NV-1240', 'Lya']

# Line species for determining individual line fluxes.  See `load_templates`.
DEFAULT_LINE_LIST = ['BrA','BrB','BrG','PfG','PfD',
                     'PaA','PaB','PaG','PaD',
                     'HeI-1083', 'SIII', 'OII-7325', 'ArIII-7138',
                     'SII', 'Ha', 'OI-6302', 'HeI-5877', 'OIII', 'Hb', 
                     'OIII-4363', 'Hg', 'Hd', 'H7', 'H8', 'H9', 'H10', 
                     'NeIII-3867', 'OII', 'NeVI-3426', 'NeV-3346', 'MgII', 
                     'CIV-1549', 'CIII-1906', 'CIII-1908', 'OIII-1663', 
                     'HeII-1640', 'NIII-1750', 'NIV-1487', 'NV-1240', 'Lya']

LSTSQ_RCOND = None

# Clipping threshold for BKG extensions in drizzle_from_visit
# BKG_CLIP = [scale, percentile_lo, percentile_hi]
# BKG_CLIP = [2, 1, 99]
BKG_CLIP = None


[docs]def set_warnings(numpy_level="ignore", astropy_level="ignore"): """ Set global numpy and astropy warnings Parameters ---------- numpy_level : {'ignore', 'warn', 'raise', 'call', 'print', 'log'} Numpy error level (see `~numpy.seterr`). astropy_level : {'error', 'ignore', 'always', 'default', 'module', 'once'} Astropy error level (see `~warnings.simplefilter`). """ from astropy.utils.exceptions import AstropyWarning np.seterr(all=numpy_level) warnings.simplefilter(astropy_level, category=AstropyWarning)
JWST_TRANSLATE = { "RA_TARG": "TARG_RA", "DEC_TARG": "TARG_DEC", "EXPTIME": "EFFEXPTM", "PA_V3": "ROLL_REF", }
[docs]def get_flt_info( files=[], columns=[ "FILE", "FILTER", "PUPIL", "INSTRUME", "DETECTOR", "TARGNAME", "DATE-OBS", "TIME-OBS", "EXPSTART", "EXPTIME", "PA_V3", "RA_TARG", "DEC_TARG", "POSTARG1", "POSTARG2", ], translate=JWST_TRANSLATE, defaults={"PUPIL": "---", "TARGNAME": "indef", "PA_V3": 0.0}, jwst_detector=True, ): """ Extract header information from a list of FLT files Parameters ---------- files : list, optional List of exposure filenames. If not provided, it will search for all "*flt.fits" files in the current directory. columns : list, optional List of header keywords to extract from the FITS files. The default columns include: - "FILE": Filename - "FILTER": Filter used - "PUPIL": Pupil element used - "INSTRUME": Instrument name - "DETECTOR": Detector name - "TARGNAME": Target name - "DATE-OBS": Observation date - "TIME-OBS": Observation time - "EXPSTART": Exposure start time - "EXPTIME": Exposure time - "PA_V3": Position angle of V3 axis - "RA_TARG": Right ascension of target - "DEC_TARG": Declination of target - "POSTARG1": Post-slew offset in axis 1 - "POSTARG2": Post-slew offset in axis 2 translate : dict, optional Dictionary mapping header keywords to their corresponding FITS keywords. Default is JWST_TRANSLATE. defaults : dict, optional Dictionary of default values for header keywords that are not present in the FITS files. Default values include: - "PUPIL": "---" - "TARGNAME": "indef" - "PA_V3": 0.0 jwst_detector : bool, optional Flag indicating whether the FITS files are from JWST detectors. Default is True. Returns ------- tab : `~astropy.table.Table` Table containing header keywords extracted from the FITS files. """ import astropy.io.fits as pyfits from astropy.table import Table if not files: files = glob.glob("*flt.fits") N = len(files) data = [] for c in columns[2:]: if c not in translate: translate[c] = "xxxxxxxxxxxxxx" targprop = [] for i in range(N): line = [os.path.basename(files[i]).split(".gz")[0]] if files[i].endswith(".gz"): im = pyfits.open(files[i]) h = im[0].header.copy() im.close() else: h = pyfits.Header().fromfile(files[i]) if os.path.basename(files[i]).startswith("jw0"): with pyfits.open(files[i]) as _im: h1 = _im["SCI"].header if "PA_V3" in h1: h["PA_V3"] = h1["PA_V3"] if "TARGPROP" in h: targprop.append(h["TARGPROP"].lower()) else: targprop.append("indef") else: targprop.append("indef") filt = parse_filter_from_header(h, jwst_detector=jwst_detector) line.append(filt) has_columns = ["FILE", "FILTER"] for key in columns[2:]: has_columns.append(key) if key in h: line.append(h[key]) elif translate[key] in h: line.append(h[translate[key]]) else: if key in defaults: line.append(defaults[key]) else: line.append(np.nan) continue data.append(line) tab = Table(rows=data, names=has_columns) if "TARGNAME" in tab.colnames: miss = tab["TARGNAME"] == "" targs = [t.replace(" ", "-") for t in tab["TARGNAME"]] if miss.sum() > 0: for i in np.where(miss)[0]: targs[i] = targprop[i] #'indef' tab["TARGNAME"] = targs return tab
[docs]def radec_to_targname( ra=0, dec=0, round_arcsec=(4, 60), precision=2, targstr="j{rah}{ram}{ras}{sign}{ded}{dem}", header=None, ): """ Turn decimal degree coordinates into a string with rounding. Parameters ---------- ra, dec : float Sky coordinates in decimal degrees round_arcsec : (scalar, scalar) Round the coordinates to nearest value of `round`, in arcseconds. precision : int Sub-arcsecond precision, in `~astropy.coordinates.SkyCoord.to_string`. targstr : string Build `targname` with this parent string. Arguments `rah, ram, ras, rass, sign, ded, dem, des, dess` are computed from the (rounded) target coordinates (`ra`, `dec`) and passed to `targstr.format`. header : `~astropy.io.fits.Header`, None Try to get `ra`, `dec` from header keywords, first `CRVAL` and then `RA_TARG`, `DEC_TARG`. Returns ------- targname : str Target string, see the example above. Examples -------- >>> # Test dec: -10d10m10.10s >>> dec = -10. - 10./60. - 10.1/3600 >>> # Test ra: 02h02m02.20s >>> cosd = np.cos(dec/180*np.pi) >>> ra = 2*15 + 2./60*15 + 2.2/3600.*15 >>> # Round to nearest arcmin >>> from grizli.utils import radec_to_targname >>> print(radec_to_targname(ra=ra, dec=dec, round_arcsec=(4,60), targstr='j{rah}{ram}{ras}{sign}{ded}{dem}')) j020204m1010 # (rounded to 4 arcsec in RA) >>> # Full precision >>> targstr = 'j{rah}{ram}{ras}.{rass}{sign}{ded}{dem}{des}.{dess}' >>> print(radec_to_targname(ra, dec,round_arcsec=(0.0001, 0.0001), precision=3, targstr=targstr)) j020202.200m101010.100 """ import astropy.coordinates import astropy.units as u import re import numpy as np if header is not None: if "CRVAL1" in header: ra, dec = header["CRVAL1"], header["CRVAL2"] else: if "RA_TARG" in header: ra, dec = header["RA_TARG"], header["DEC_TARG"] cosd = np.cos(dec / 180 * np.pi) scl = np.array(round_arcsec) / 3600 * np.array([360 / 24, 1]) dec_scl = int(np.round(dec / scl[1])) * scl[1] ra_scl = int(np.round(ra / scl[0])) * scl[0] coo = astropy.coordinates.SkyCoord( ra=ra_scl * u.deg, dec=dec_scl * u.deg, frame="icrs" ) cstr = re.split("[hmsd.]", coo.to_string("hmsdms", precision=precision)) # targname = ('j{0}{1}'.format(''.join(cstr[0:3]), ''.join(cstr[4:7]))) # targname = targname.replace(' ', '').replace('+','p').replace('-','m') rah, ram, ras, rass = cstr[0:4] ded, dem, des, dess = cstr[4:8] sign = "p" if ded[1] == "+" else "m" targname = targstr.format( rah=rah, ram=ram, ras=ras, rass=rass, ded=ded[2:], dem=dem, des=des, dess=dess, sign=sign, ) return targname
[docs]def blot_nearest_exact( in_data, in_wcs, out_wcs, verbose=True, stepsize=-1, scale_by_pixel_area=False, wcs_mask=True, fill_value=0, ): """ Own blot function for blotting exact pixels without rescaling for input and output pixel size Parameters ---------- in_data : `~numpy.ndarray` Input data to blot. in_wcs : `~astropy.wcs.WCS` Input WCS. Must have _naxis1, _naxis2 or pixel_shape attributes. out_wcs : `~astropy.wcs.WCS` Output WCS. Must have _naxis1, _naxis2 or pixel_shape attributes. verbose : bool, optional If True, print information about the overlap. Default is True. stepsize : int, optional Step size for interpolation. If set to <=1, the function will use the explicit wcs mapping ``out_wcs.all_pix2world > in_wcs.all_world2pix``. If > 1, will use ``astrodrizzle.DefaultWCSMapping(out_wcs, in_wcs, nx, ny, stepsize)``. scale_by_pixel_area : bool If True, then scale the output image by the square of the image pixel scales (out**2/in**2), i.e., the pixel areas. wcs_mask : bool Use fast WCS masking. If False, use ``regions``. fill_value : int/float Value in ``out_data`` not covered by ``in_data``. Returns ------- out_data : `~numpy.ndarray` Blotted data. """ from regions import Regions from shapely.geometry import Polygon import scipy.ndimage as nd from drizzlepac import cdriz try: from .utils_numba.interp import pixel_map_c except ImportError: from grizli.utils_numba.interp import pixel_map_c # Shapes, in numpy array convention (y, x) if hasattr(in_wcs, "pixel_shape"): in_sh = in_wcs.pixel_shape[::-1] elif hasattr(in_wcs, "array_shape"): in_sh = in_wcs.array_shape else: in_sh = (in_wcs._naxis2, in_wcs._naxis1) if hasattr(out_wcs, "pixel_shape"): out_sh = out_wcs.pixel_shape[::-1] elif hasattr(out_wcs, "array_shape"): out_sh = out_wcs.array_shape else: out_sh = (out_wcs._naxis2, out_wcs._naxis1) in_px = in_wcs.calc_footprint() in_poly = Polygon(in_px).buffer(5.0 / 3600.0) out_px = out_wcs.calc_footprint() out_poly = Polygon(out_px).buffer(5.0 / 3600) olap = in_poly.intersection(out_poly) if olap.area == 0: if verbose: print("No overlap") return np.zeros(out_sh) # Region mask for speedup if np.isclose(olap.area, out_poly.area, 0.01): mask = np.ones(out_sh, dtype=bool) elif wcs_mask: # Use wcs / Path from matplotlib.path import Path out_xy = out_wcs.all_world2pix(np.array(in_poly.exterior.xy).T, 0) - 0.5 out_xy_path = Path(out_xy) yp, xp = np.indices(out_sh) pts = np.array([xp.flatten(), yp.flatten()]).T mask = out_xy_path.contains_points(pts).reshape(out_sh) else: olap_poly = np.array(olap.exterior.xy) poly_reg = ( "fk5\npolygon(" + ",".join(["{0}".format(p + 1) for p in olap_poly.T.flatten()]) + ")\n" ) reg = Regions.parse(poly_reg, format="ds9")[0] mask = reg.to_mask().to_image(shape=out_sh) # yp, xp = np.indices(in_data.shape) # xi, yi = xp[mask], yp[mask] yo, xo = np.where(mask > 0) if stepsize <= 1: rd = out_wcs.all_pix2world(xo, yo, 0) xf, yf = in_wcs.all_world2pix(rd[0], rd[1], 0) else: # Seems backwards and doesn't quite agree with above blot_wcs = out_wcs source_wcs = in_wcs if hasattr(blot_wcs, "pixel_shape"): nx, ny = blot_wcs.pixel_shape else: nx, ny = int(blot_wcs._naxis1), int(blot_wcs._naxis2) mapping = cdriz.DefaultWCSMapping(blot_wcs, source_wcs, nx, ny, stepsize) xf, yf = mapping(xo, yo) xi, yi = np.asarray(np.round(xf),dtype=int), np.asarray(np.round(yf),dtype=int) m2 = (xi >= 0) & (yi >= 0) & (xi < in_sh[1]) & (yi < in_sh[0]) xi, yi, xf, yf, xo, yo = xi[m2], yi[m2], xf[m2], yf[m2], xo[m2], yo[m2] out_data = np.ones(out_sh, dtype=np.float64)*fill_value status = pixel_map_c(np.asarray(in_data,dtype=np.float64), xi, yi, out_data, xo, yo) # Fill empty func = nd.maximum_filter fill = out_data == 0 filtered = func(out_data, size=5) out_data[fill] = filtered[fill] if scale_by_pixel_area: in_scale = get_wcs_pscale(in_wcs) out_scale = get_wcs_pscale(out_wcs) out_data *= out_scale ** 2 / in_scale ** 2 return out_data.astype(in_data.dtype)
def _slice_ndfilter(data, filter_func, slices, args, size, footprint, kwargs): """ Helper function passing image slices to `scipy.ndimage` filters that is pickleable for threading with `multiprocessing` Parameters ---------- data, filter_func, args, size, footprint : See `multiprocessing_ndfilter` slices : (slice, slice, slice, slice) Array slices for insert a cutout back into a larger parent array Returns ------- filtered : array-like Filtered data slices : tuple `slices` as input """ filtered = filter_func(data, *args, size=size, footprint=footprint, **kwargs) return filtered, slices
[docs]def multiprocessing_ndfilter( data, filter_func, filter_args=(), size=None, footprint=None, cutout_size=256, n_proc=4, timeout=90, mask=None, verbose=True, **kwargs, ): """ Cut up a large array and send slices to `scipy.ndimage` filters Parameters ---------- data : array-like Main image array filter_func : function Filtering function, e.g., `scipy.ndimage.median_filter` filter_args : tuple Arguments to pass to `filter_func` size, footprint : int, array-like Filter size or footprint, see, e.g., `scipy.ndimage.median_filter` cutout_size : int Size of subimage cutouts n_proc : int Number of `multiprocessing` processes to use timeout : float `multiprocessing` timeout (seconds) mask : array-like Array multiplied to `data` that can zero-out regions to ignore verbose : bool Print status messages kwargs : dict Keyword arguments passed through to `filter_func` Returns ------- filtered : array-like Filtered version of `data` Examples -------- >>> import time >>> import numpy as np >>> import scipy.ndimage as nd >>> from grizli.utils import multiprocessing_ndfilter >>> rnd = np.random.normal(size=(512,512)) >>> t0 = time.time() >>> f_serial = nd.median_filter(rnd, size=10) >>> t1 = time.time() >>> f_mp = multiprocessing_ndfilter(rnd, nd.median_filter, size=10, >>> cutout_size=256, n_proc=4) >>> t2 = time.time() >>> np.allclose(f_serial, f_mp) True >>> print(f' serial: {(t1-t0)*1000:.1f} ms') >>> print(f'parallel: {(t2-t1)*1000:.1f} ms') serial: 573.9 ms parallel: 214.8 ms """ import multiprocessing as mp try: from tqdm import tqdm except ImportError: verbose = False sh = data.shape msg = None if cutout_size > np.max(sh): msg = f"cutout_size={cutout_size} greater than image dimensions, run " msg += f"`{filter_func}` directly" elif n_proc == 0: msg = f"n_proc = 0, run in a single command" if msg is not None: if verbose: print(msg) filtered = filter_func(data, *filter_args, size=size, footprint=footprint) return filtered # Grid size nx = data.shape[1] // cutout_size + 1 ny = data.shape[0] // cutout_size + 1 # Padding if footprint is not None: fpsh = footprint.shape pad = np.max(fpsh) elif size is not None: pad = size else: raise ValueError("Either size or footprint must be specified") if n_proc < 0: n_proc = mp.cpu_count() n_proc = np.minimum(n_proc, mp.cpu_count()) pool = mp.Pool(processes=n_proc) jobs = [] if mask is not None: data_mask = data * mask else: data_mask = data # Make image slices for i in range(nx): xmi = np.maximum(0, i * cutout_size - pad) xma = np.minimum(sh[1], (i + 1) * cutout_size + pad) # print(i, xmi, xma) if i == 0: slx = slice(0, cutout_size) x0 = 0 elif i < nx - 1: slx = slice(pad, cutout_size + pad) x0 = i * cutout_size else: slx = slice(pad, cutout_size + 1) x0 = xmi + pad nxs = slx.stop - slx.start oslx = slice(x0, x0 + nxs) for j in range(ny): ymi = np.maximum(0, j * cutout_size - pad) yma = np.minimum(sh[0], (j + 1) * cutout_size + pad) if j == 0: sly = slice(0, cutout_size) y0 = 0 elif j < ny - 1: sly = slice(pad, cutout_size + pad) y0 = j * cutout_size else: sly = slice(pad, cutout_size + 1) y0 = ymi + pad nys = sly.stop - sly.start osly = slice(y0, y0 + nys) cut = data_mask[ymi:yma, xmi:xma] if cut.max() == 0: # print(f'Skip {xmi} {xma} {ymi} {yma}') continue # Make jobs for filtering the image slices slices = (osly, oslx, sly, slx) _args = (cut, filter_func, slices, filter_args, size, footprint, kwargs) jobs.append(pool.apply_async(_slice_ndfilter, _args)) # Collect results pool.close() filtered = np.zeros_like(data) if verbose: _iter = tqdm(jobs) else: _iter = jobs for res in _iter: filtered_i, slices = res.get(timeout=timeout) filtered[slices[:2]] += filtered_i[slices[2:]] return filtered
[docs]def parse_flt_files( files=[], info=None, uniquename=False, use_visit=False, get_footprint=False, translate={ "AEGIS-": "aegis-", "COSMOS-": "cosmos-", "GNGRISM": "goodsn-", "GOODS-SOUTH-": "goodss-", "UDS-": "uds-", }, visit_split_shift=1.5, max_dt=1e9, path="../RAW", ): """ Read header information from a list of exposures and parse out groups based on filter/target/orientation. Parameters ---------- files : list, optional List of exposure filenames. If not specified, will use ``*flt.fits``. info : None or `~astropy.table.Table`, optional Output from `~grizli.utils.get_flt_info`. uniquename : bool, optional If True, then split everything by program ID and visit name. If False, then just group by targname/filter/pa_v3. use_visit : bool, optional For parallel observations with ``targname='ANY'``, use the filename up to the visit ID as the target name. For example: >>> flc = 'jbhj64d8q_flc.fits' >>> visit_targname = flc[:6] >>> print(visit_targname) jbhj64 If False, generate a targname for parallel observations based on the pointing coordinates using `radec_to_targname`. Use this keyword for dithered parallels like 3D-HST / GLASS but set to False for undithered parallels like WISP. Should also generally be used with ``uniquename=False`` otherwise generates names that are a bit redundant: +--------------+---------------------------+ | `uniquename` | Output Targname | +==============+===========================+ | True | jbhj45-bhj-45-180.0-F814W | +--------------+---------------------------+ | False | jbhj45-180.0-F814W | +--------------+---------------------------+ get_footprint : bool, optional If True, get the visit footprint from FLT WCS. translate : dict, optional Translation dictionary to modify TARGNAME keywords to some other value. Used like: >>> targname = 'GOODS-SOUTH-10' >>> translate = {'GOODS-SOUTH-': 'goodss-'} >>> for k in translate: >>> targname = targname.replace(k, translate[k]) >>> print(targname) goodss-10 visit_split_shift : float, optional Separation in ``arcmin`` beyond which exposures in a group are split into separate visits. max_dt : float, optional Maximum time separation between exposures in a visit, in seconds. path : str, optional PATH to search for `flt` files if ``info`` not provided Returns ------- output_list : dict Dictionary split by target/filter/pa_v3. Keys are derived visit product names and values are lists of exposure filenames corresponding to that set. Keys are generated with the formats like: >>> targname = 'macs1149+2223' >>> pa_v3 = 32.0 >>> filter = 'f140w' >>> flt_filename = 'ica521naq_flt.fits' >>> propstr = flt_filename[1:4] >>> visit = flt_filename[4:6] >>> # uniquename = False >>> print('{0}-{1:05.1f}-{2}'.format(targname, pa_v3, filter)) macs1149.6+2223-032.0-f140w >>> # uniquename = True >>> print('{0}-{1:3s}-{2:2s}-{3:05.1f}-{4:s}'.format(targname, propstr, visit, pa_v3, filter)) macs1149.6+2223-ca5-21-032.0-f140w filter_list : dict Nested dictionary split by filter and then PA_V3. This shouldn't be used if exposures from completely disjoint pointings are stored in the same working directory. """ if info is None: if not files: files = glob.glob(os.path.join(path), "*flt.fits") if len(files) == 0: return False info = get_flt_info(files) else: info = info.copy() for c in info.colnames: if not c.islower(): info.rename_column(c, c.lower()) if "expstart" not in info.colnames: info["expstart"] = info["exptime"] * 0.0 so = np.argsort(info["expstart"]) info = info[so] # pa_v3 = np.round(info['pa_v3']*10)/10 % 360. pa_v3 = np.round(np.round(info["pa_v3"], decimals=1)) % 360.0 target_list = [] for i in range(len(info)): # Replace ANY targets with JRhRmRs-DdDmDs if info["targname"][i] == "ANY": if use_visit: new_targname = info["file"][i][:6] else: new_targname = "par-" + radec_to_targname( ra=info["ra_targ"][i], dec=info["dec_targ"][i] ) target_list.append(new_targname.lower()) else: target_list.append(info["targname"][i]) target_list = np.array(target_list) _prog_ids = [] visits = [] for file in info["file"]: bfile = os.path.basename(file) if bfile.startswith("jw"): _prog_ids.append(bfile[2:7]) visits.append(bfile[7:10]) else: _prog_ids.append(bfile[1:4]) visits.append(bfile[4:6]) visits = np.array(visits) info["progIDs"] = _prog_ids progIDs = np.unique(info["progIDs"]) dates = np.array(["".join(date.split("-")[1:]) for date in info["date-obs"]]) targets = np.unique(target_list) output_list = [] # OrderedDict() filter_list = OrderedDict() for filter in np.unique(info["filter"]): filter_list[filter] = OrderedDict() angles = np.unique(pa_v3[(info["filter"] == filter)]) for angle in angles: filter_list[filter][angle] = [] for target in targets: # 3D-HST targname translations target_use = target for key in translate.keys(): target_use = target_use.replace(key, translate[key]) # pad i < 10 with zero for key in translate.keys(): if translate[key] in target_use: spl = target_use.split("-") try: if (int(spl[-1]) < 10) & (len(spl[-1]) == 1): spl[-1] = "{0:02d}".format(int(spl[-1])) target_use = "-".join(spl) except: pass for filter in np.unique(info["filter"][(target_list == target)]): angles = np.unique( pa_v3[(info["filter"] == filter) & (target_list == target)] ) for angle in angles: exposure_list = [] exposure_start = [] product = "{0}-{1:05.1f}-{2}".format(target_use, angle, filter) visit_match = np.unique( visits[(target_list == target) & (info["filter"] == filter)] ) this_progs = [] this_visits = [] for visit in visit_match: ix = (visits == visit) & (target_list == target) ix &= info["filter"] == filter # this_progs.append(info['progIDs'][ix][0]) # print visit, ix.sum(), np.unique(info['progIDs'][ix]) new_progs = list(np.unique(info["progIDs"][ix])) this_visits.extend([visit] * len(new_progs)) this_progs.extend(new_progs) for visit, prog in zip(this_visits, this_progs): visit_list = [] visit_start = [] _vstr = "{0}-{1}-{2}-{3:05.1f}-{4}" visit_product = _vstr.format(target_use, prog, visit, angle, filter) use = target_list == target use &= info["filter"] == filter use &= visits == visit use &= pa_v3 == angle use &= info["progIDs"] == prog if use.sum() == 0: continue for tstart, file in zip(info["expstart"][use], info["file"][use]): f = file.split(".gz")[0] if f not in exposure_list: visit_list.append(str(f)) visit_start.append(tstart) exposure_list = np.append(exposure_list, visit_list) exposure_start.extend(visit_start) filter_list[filter][angle].extend(visit_list) if uniquename: print(visit_product, len(visit_list)) so = np.argsort(visit_start) exposure_list = np.array(visit_list)[so] # output_list[visit_product.lower()] = visit_list d = OrderedDict( product=str(visit_product.lower()), files=list(np.array(visit_list)[so]), ) output_list.append(d) if not uniquename: print(product, len(exposure_list)) so = np.argsort(exposure_start) exposure_list = np.array(exposure_list)[so] # output_list[product.lower()] = exposure_list d = OrderedDict( product=str(product.lower()), files=list(np.array(exposure_list)[so]), ) output_list.append(d) # Split large shifts if visit_split_shift > 0: split_list = [] for o in output_list: _spl = split_visit( o, path=path, max_dt=max_dt, visit_split_shift=visit_split_shift ) split_list.extend(_spl) output_list = split_list # Get visit footprint from FLT WCS if get_footprint: from shapely.geometry import Polygon N = len(output_list) for i in range(N): for j in range(len(output_list[i]["files"])): flt_file = output_list[i]["files"][j] if not os.path.exists(flt_file): for gzext in ["", ".gz"]: _flt_file = os.path.join(path, flt_file + gzext) if os.path.exists(_flt_file): flt_file = _flt_file break flt_j = pyfits.open(flt_file) h = flt_j[0].header _ext = 0 if h["INSTRUME"] == "WFC3": _ext = 1 if h["DETECTOR"] == "IR": wcs_j = pywcs.WCS(flt_j["SCI", 1]) else: wcs_j = pywcs.WCS(flt_j["SCI", 1], fobj=flt_j) elif h["INSTRUME"] == "WFPC2": _ext = 1 wcs_j = pywcs.WCS(flt_j["SCI", 1]) else: _ext = 1 wcs_j = pywcs.WCS(flt_j["SCI", 1], fobj=flt_j) if (wcs_j.pixel_shape is None) & ("NPIX1" in flt_j["SCI", 1].header): _h = flt_j["SCI", 1].header wcs_j.pixel_shape = (_h["NPIX1"], _h["NPIX2"]) fp_j = Polygon(wcs_j.calc_footprint()) if j == 0: fp_i = fp_j.buffer(1.0 / 3600) else: fp_i = fp_i.union(fp_j.buffer(1.0 / 3600)) flt_j.close() output_list[i]["footprint"] = fp_i return output_list, filter_list
[docs]def split_visit(visit, visit_split_shift=1.5, max_dt=6.0 / 24, path="../RAW"): """ Check if files in a visit have large shifts and split them otherwise Parameters ---------- visit : dict The visit dictionary containing information about the visit. visit_split_shift : float, optional The threshold for splitting the visit if shifts are larger than ``visit_split_shift`` arcmin. Default is 1.5. max_dt : float, optional The maximum time difference between exposures in days. Default is 6.0 / 24. path : str, optional The path to the directory containing the visit files. Default is "../RAW". Returns ------- list of dict A list of visit dictionaries, each representing a split visit. """ ims = [] for file in visit["files"]: for gzext in ["", ".gz"]: _file = os.path.join(path, file) + gzext if os.path.exists(_file): ims.append(pyfits.open(_file)) break #ims = [pyfits.open(os.path.join(path, file)) for file in visit['files']] crval1 = np.array([im[1].header['CRVAL1'] for im in ims]) crval2 = np.array([im[1].header['CRVAL2'] for im in ims]) expstart = np.array([im[0].header['EXPSTART'] for im in ims]) dt = np.asarray((expstart-expstart[0])/max_dt,dtype=int) for im in ims: im.close() dx = (crval1 - crval1[0]) * 60 * np.cos(crval2[0] / 180 * np.pi) dy = (crval2 - crval2[0]) * 60 dxi = np.asarray(np.round(dx/visit_split_shift),dtype=int) dyi = np.asarray(np.round(dy/visit_split_shift),dtype=int) keys = dxi*100+dyi+1000*dt un = np.unique(keys) if len(un) == 1: return [visit] else: spl = visit["product"].split("-") isJWST = spl[-1].lower().startswith("clear") isJWST |= spl[-1].lower() in ["gr150r", "gr150c", "grismr", "grismc"] if isJWST: spl.insert(-2, "") else: spl.insert(-1, "") visits = [] for i in range(len(un)): ix = keys == un[i] if isJWST: spl[-3] = "abcdefghijklmnopqrsuvwxyz"[i] else: spl[-2] = "abcdefghijklmnopqrsuvwxyz"[i] new_visit = { "files": list(np.array(visit["files"])[ix]), "product": "-".join(spl), } if "footprints" in visit: new_visit["footprints"] = list(np.array(visit["footprints"])[ix]) visits.append(new_visit) return visits
[docs]def get_visit_footprints(visits): """ Add `~shapely.geometry.Polygon` ``footprint`` attributes to visit dict. Parameters ---------- visits : list List of visit dictionaries. Returns ------- list List of visit dictionaries with ``footprint`` attribute added. """ import os import astropy.io.fits as pyfits import astropy.wcs as pywcs from shapely.geometry import Polygon N = len(visits) for i in range(N): for j in range(len(visits[i]["files"])): flt_file = visits[i]["files"][j] if (not os.path.exists(flt_file)) & os.path.exists("../RAW/" + flt_file): flt_file = "../RAW/" + flt_file flt_j = pyfits.open(flt_file) h = flt_j[0].header if (h["INSTRUME"] == "WFC3") & (h["DETECTOR"] == "IR"): wcs_j = pywcs.WCS(flt_j["SCI", 1]) else: wcs_j = pywcs.WCS(flt_j["SCI", 1], fobj=flt_j) fp_j = Polygon(wcs_j.calc_footprint()) if j == 0: fp_i = fp_j else: fp_i = fp_i.union(fp_j) flt_j.close() visits[i]["footprint"] = fp_i return visits
[docs]def parse_visit_overlaps(visits, buffer=15.0): """Find overlapping visits/filters to make combined mosaics Parameters ---------- visits : list Output list of visit information from `~grizli.utils.parse_flt_files`. The script looks for files like `visits[i]['product']+'_dr?_sci.fits'` to compute the WCS footprint of a visit. These are produced, e.g., by `~grizli.prep.process_direct_grism_visit`. buffer : float Buffer, in `~astropy.units.arcsec`, to add around visit footprints to look for overlaps. Returns ------- exposure_groups : list List of overlapping visits, with similar format as input `visits`. """ import copy from shapely.geometry import Polygon N = len(visits) exposure_groups = [] used = np.arange(len(visits)) < 0 for i in range(N): f_i = visits[i]["product"].split("-")[-1] if used[i]: continue if "footprint" in visits[i]: fp_i = visits[i]["footprint"].buffer(buffer / 3600.0) else: _products = visits[i]["product"] + "_dr?_sci.fits" im_i = pyfits.open(glob.glob(_products)[0]) wcs_i = pywcs.WCS(im_i[0]) fp_i = Polygon(wcs_i.calc_footprint()).buffer(buffer / 3600.0) im_i.close() exposure_groups.append(copy.deepcopy(visits[i])) for j in range(i + 1, N): f_j = visits[j]["product"].split("-")[-1] if (f_j != f_i) | (used[j]): continue # if "footprint" in visits[j]: fp_j = visits[j]["footprint"].buffer(buffer / 3600.0) else: _products = visits[j]["product"] + "_dr?_sci.fits" im_j = pyfits.open(glob.glob(_products)[0]) wcs_j = pywcs.WCS(im_j[0]) fp_j = Polygon(wcs_j.calc_footprint()).buffer(buffer / 3600.0) im_j.close() olap = fp_i.intersection(fp_j) if olap.area > 0: used[j] = True fp_i = fp_i.union(fp_j) exposure_groups[-1]["footprint"] = fp_i exposure_groups[-1]["files"].extend(visits[j]["files"]) for i in range(len(exposure_groups)): flt_i = pyfits.open(exposure_groups[i]["files"][0]) product = flt_i[0].header["TARGNAME"].lower() if product == "any": product = "par-" + radec_to_targname(header=flt_i["SCI", 1].header) f_i = exposure_groups[i]["product"].split("-")[-1] product += "-" + f_i exposure_groups[i]["product"] = product flt_i.close() return exposure_groups
DIRECT_ORDER = { "G102": [ "F105W","F110W","F098M","F125W","F140W","F160W","F127M","F139M","F153M", "F132N","F130N","F128N","F126N","F164N","F167N", ], "G141": [ "F140W","F160W","F125W","F105W","F110W","F098M","F127M","F139M","F153M", "F132N","F130N","F128N","F126N","F164N","F167N", ], "G800L": [ "F814W","F606W","F850LP","F775W","F435W","F105W","F110W","F098M","F125W", "F140W","F160W","F127M","F139M","F153M","F132N","F130N","F128N","F126N", "F164N","F167N", ], "GR150C": ["F115W", "F150W", "F200W"], "GR150R": ["F115W", "F150W", "F200W"], }
[docs]def parse_grism_associations(exposure_groups, info, best_direct=DIRECT_ORDER, get_max_overlap=True): """Get associated lists of grism and direct exposures Parameters ---------- exposure_grups : list Output list of overlapping visits from `~grizli.utils.parse_visit_overlaps`. best_direct : dict Dictionary of the preferred direct imaging filters to use with a particular grism. Returns ------- grism_groups : list List of dictionaries with associated 'direct' and 'grism' entries. """ N = len(exposure_groups) grism_groups = [] for i in range(N): _espi = exposure_groups[i]['product'].split('-') if _espi[-2][0] in 'fg': pupil_i = _espi[-2] f_i = _espi[-1] root_i = '-'.join(_espi[:-2]) else: pupil_i = None f_i = _espi[-1] root_i = '-'.join(_espi[:-1]) if f_i.startswith('g'): group = OrderedDict(grism=exposure_groups[i], direct=None) else: continue fp_i = exposure_groups[i]['footprint'] olap_i = 0. d_i = f_i d_idx = 10 for j in range(N): _espj = exposure_groups[j]['product'].split('-') if _espj[-2][0] in 'fg': pupil_j = _espj[-2] f_j = _espj[-1] root_j = '-'.join(_espj[:-2]) else: f_j = _espj[-1] root_j = '-'.join(_espj[:-1]) pupil_j = None if f_j.startswith('g'): continue fp_j = exposure_groups[j]['footprint'] olap = fp_i.intersection(fp_j) if (root_j == root_i): if pupil_i is not None: if pupil_j == pupil_i: group['direct'] = exposure_groups[j] else: continue else: if f_j.upper() not in best_direct[f_i.upper()]: continue if best_direct[f_i.upper()].index(f_j.upper()) < d_idx: d_idx = best_direct[f_i.upper()].index(f_j.upper()) group['direct'] = exposure_groups[j] olap_i = olap.area d_i = f_j grism_groups.append(group) return grism_groups
[docs]def get_hst_filter(header, **kwargs): """ Deprecated: use `grizli.utils.parse_filter_from_header` """ result = parse_filter_from_header(header, **kwargs) return result
[docs]def parse_filter_from_header(header, filter_only=False, jwst_detector=False, **kwargs): """ Get simple filter name out of an HST/JWST image header. ACS has two keywords for the two filter wheels, so just return the non-CLEAR filter. For example, >>> h = astropy.io.fits.Header() >>> h['INSTRUME'] = 'ACS' >>> h['FILTER1'] = 'CLEAR1L' >>> h['FILTER2'] = 'F814W' >>> from grizli.utils import parse_filter_from_header >>> print(parse_filter_from_header(h)) F814W >>> h['FILTER1'] = 'G800L' >>> h['FILTER2'] = 'CLEAR2L' >>> print(parse_filter_from_header(h)) G800L Parameters ---------- header : `~astropy.io.fits.Header` Image header with FILTER or FILTER1,FILTER2,...,FILTERN keywords filter_only : bool If true, don't do any special handling with JWST but just return the ``FILTER`` keyword itself. Otherwise, for JWST/NIRISS, return ``{PUPIL}-{FILTER}`` and for JWST/NIRCAM, return ``{FILTER}-{PUPIL}`` jwst_detector : bool If True, prepend ``DETECTOR`` to output for JWST NIRCam and NIRISS to distinguish NIRCam detectors and filter names common between these instruments. Returns ------- filter : str """ if "INSTRUME" not in header: instrume = "N/A" else: instrume = header["INSTRUME"] if instrume.strip() == "ACS": for i in [1, 2]: filter_i = header["FILTER{0:d}".format(i)] if "CLEAR" in filter_i: continue else: filter = filter_i elif instrume == "WFPC2": filter = header["FILTNAM1"] elif instrume == "NIRISS": if filter_only: filter = header["FILTER"] else: filter = "{0}-{1}".format(header["PUPIL"], header["FILTER"]) if jwst_detector: filter = "{0}-{1}".format(header["DETECTOR"], filter) elif instrume == "NIRCAM": if filter_only: filter = header["FILTER"] else: filter = "{0}-{1}".format(header["FILTER"], header["PUPIL"]) if jwst_detector: filter = "{0}-{1}".format(header["DETECTOR"], filter) filter = filter.replace("LONG", "5") elif "FILTER" in header: filter = header["FILTER"] else: msg = "Failed to parse FILTER keyword for INSTRUMEnt {0}" raise KeyError(msg.format(instrume)) return filter.upper()
EE_RADII = [0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.8, 1.0, 1.5, 2.0]
[docs]def get_filter_obsmode( filter="f160w", acs_chip="wfc1", uvis_chip="uvis2", aper=np.inf, case=str.lower ): """ Derive `~pysynphot` obsmode keyword from a filter name, where UVIS filters end in 'u' Parameters ---------- filter : str, optional The name of the filter. Default is "f160w". acs_chip : str, optional The ACS chip. Default is "wfc1". uvis_chip : str, optional The UVIS chip. Default is "uvis2". aper : float, optional The aperture size. Set to np.inf by default. case : function, optional The case conversion function. Default is str.lower. Returns ------- str The `~pysynphot` obsmode keyword derived from the filter name. """ if filter.lower()[:2] in ["f0", "f1", "g1"]: inst = "wfc3,ir" else: if filter.lower().endswith("u"): inst = f"wfc3,{uvis_chip}" else: inst = f"acs,{acs_chip}" obsmode = inst + "," + filter.strip("u").lower() if np.isfinite(aper): obsmode += f",aper#{aper:4.2f}" return case(obsmode)
[docs]def tabulate_encircled_energy(aper_radii=EE_RADII, norm_radius=4.0): """ Tabulated encircled energy for different aperture radii and normalization radius. Parameters ---------- aper_radii : list, optional List of aperture radii in arcseconds. Default is [0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.8, 1.0, 1.5, 2.0]. norm_radius : float, optional Normalization radius in arcseconds. Default is 4.0. """ import pysynphot as S from .pipeline import default_params # Default spectrum sp = S.FlatSpectrum(25, fluxunits="ABMag") tab = GTable() tab["radius"] = aper_radii * u.arcsec tab.meta["RNORM"] = norm_radius, "Normalization radius, arcsec" # IR for f in default_params.IR_M_FILTERS + default_params.IR_W_FILTERS: obsmode = "wfc3,ir," + f.lower() print(obsmode) tab[obsmode] = synphot_encircled_energy( obsmode=obsmode, sp=sp, aper_radii=aper_radii, norm_radius=norm_radius ) tab.meta["ZP_{0}".format(obsmode)] = synphot_zeropoint( obsmode=obsmode, radius=norm_radius ) # Optical. Wrap in try/except to catch missing filters for inst in ["acs,wfc1,", "wfc3,uvis2,"]: for f in ( default_params.OPT_M_FILTERS + default_params.OPT_W_FILTERS + default_params.UV_M_FILTERS + default_params.UV_W_FILTERS ): obsmode = inst + f.lower() try: tab[obsmode] = synphot_encircled_energy( obsmode=obsmode, sp=sp, aper_radii=aper_radii, norm_radius=norm_radius, ) print(obsmode) tab.meta["ZP_{0}".format(obsmode)] = synphot_zeropoint( obsmode=obsmode, radius=norm_radius ) except: # Failed because obsmode not available in synphot continue tab.meta["PSYNVER"] = S.__version__, "Pysynphot version" tab.write("hst_encircled_energy.fits", overwrite=True)
[docs]def synphot_zeropoint(obsmode="wfc3,ir,f160w", radius=4.0): """ Compute synphot for a specific aperture. Parameters ---------- obsmode : str, optional The observation mode string. Default is "wfc3,ir,f160w". radius : float, optional The radius of the aperture in arcseconds. Default is 4.0. Returns ------- ZP : float The zero point magnitude calculated using synphot. """ import pysynphot as S sp = S.FlatSpectrum(25, fluxunits="ABMag") if np.isfinite(radius): bp = S.ObsBandpass(obsmode + ",aper#{0:.2f}".format(radius)) else: bp = S.ObsBandpass(obsmode) obs = S.Observation(sp, bp) ZP = 25 + 2.5 * np.log10(obs.countrate()) return ZP
[docs]def synphot_encircled_energy( obsmode="wfc3,ir,f160w", sp="default", aper_radii=EE_RADII, norm_radius=4.0 ): """ Compute encircled energy curves with pysynphot Parameters ---------- obsmode : str The observation mode string specifying the instrument, detector, and filter. sp : `pysynphot.spectrum.SourceSpectrum` or None, optional The source spectrum to use for the calculation. If None, a flat spectrum with a magnitude of 25 AB mag is used. aper_radii : array-like, optional The array of aperture radii in arcseconds at which to compute the encircled energy. Default is [0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.8, 1.0, 1.5, 2.0]. norm_radius : float, optional The normalization radius in arcseconds. The encircled energy at this radius will be used to normalize the encircled energy curve. If set to np.inf, the normalization will be performed using the full aperture. Default is 4.0. Returns ------- counts : array-like The array of encircled energy counts normalized to the counts at the normalization radius. """ import pysynphot as S if sp == "default": sp = S.FlatSpectrum(25, fluxunits="ABMag") # Normalization if np.isfinite(norm_radius): bp = S.ObsBandpass(obsmode + ",aper#{0:.2f}".format(norm_radius)) else: bp = S.ObsBandpass(obsmode) obs = S.Observation(sp, bp) norm_counts = obs.countrate() counts = np.ones_like(aper_radii) for i, r_aper in enumerate(aper_radii): # print(obsmode, r_aper) bp = S.ObsBandpass(obsmode + ",aper#{0:.2f}".format(r_aper)) obs = S.Observation(sp, bp) counts[i] = obs.countrate() return counts / norm_counts
[docs]def photfnu_from_photflam(photflam, photplam): """ Compute PHOTFNU from PHOTFLAM and PHOTPLAM, e.g., for ACS/WFC Parameters ---------- photflam : float The PHOTFLAM value from the FITS header. photplam : float The PHOTPLAM value from the FITS header. Returns ------- photfnu : float The computed PHOTFNU value. Examples -------- >>> ZP = -2.5 * np.log10(photflam) - 21.10 - 5 * np.log10(photplam) + 18.6921 >>> photfnu = 10 ** (-0.4 * (ZP - 23.9)) * 1.0e-6 """ ZP = -2.5 * np.log10(photflam) - 21.10 - 5 * np.log10(photplam) + 18.6921 photfnu = 10 ** (-0.4 * (ZP - 23.9)) * 1.0e-6 return photfnu
[docs]def calc_header_zeropoint(im, ext=0): """ Determine AB zeropoint from image header Parameters ---------- im : `~astropy.io.fits.HDUList` or Image object or header. ext : int, optional Extension number to use. Default is 0. Returns ------- ZP : float AB zeropoint """ from . import model scale_exptime = 1.0 if isinstance(im, pyfits.Header): header = im else: if "_dr" in im.filename(): ext = 0 elif "_fl" in im.filename(): if "DETECTOR" in im[0].header: if im[0].header["DETECTOR"] == "IR": ext = 0 bunit = im[1].header["BUNIT"] else: # ACS / UVIS if ext == 0: ext = 1 bunit = im[1].header["BUNIT"] if bunit == "ELECTRONS": scale_exptime = im[0].header["EXPTIME"] header = im[ext].header try: fi = parse_filter_from_header(im[0].header).upper() except: fi = None # Get AB zeropoint if "APZP" in header: ZP = header["ABZP"] elif "PHOTFNU" in header: ZP = -2.5 * np.log10(header["PHOTFNU"]) + 8.90 ZP += 2.5 * np.log10(scale_exptime) elif "PHOTFLAM" in header: ZP = ( -2.5 * np.log10(header["PHOTFLAM"]) - 21.10 - 5 * np.log10(header["PHOTPLAM"]) + 18.6921 ) ZP += 2.5 * np.log10(scale_exptime) elif fi is not None: if fi in model.photflam_list: ZP = ( -2.5 * np.log10(model.photflam_list[fi]) - 21.10 - 5 * np.log10(model.photplam_list[fi]) + 18.6921 ) else: print("Couldn't find PHOTFNU or PHOTPLAM/PHOTFLAM keywords, use ZP=25") ZP = 25 else: print("Couldn't find FILTER, PHOTFNU or PHOTPLAM/PHOTFLAM keywords, use ZP=25") ZP = 25 # If zeropoint infinite (e.g., PHOTFLAM = 0), then calculate from synphot if not np.isfinite(ZP): try: import pysynphot as S bp = S.ObsBandpass(im[0].header["PHOTMODE"].replace(" ", ",")) spec = S.FlatSpectrum(0, fluxunits="ABMag") obs = S.Observation(spec, bp) ZP = 2.5 * np.log10(obs.countrate()) except: pass return ZP
DEFAULT_PRIMARY_KEYS = [ "FILENAME", "INSTRUME", "INSTRUME", "DETECTOR", "FILTER", "FILTER1", "FILTER2", "EXPSTART", "DATE-OBS", "EXPTIME", "IDCTAB", "NPOLFILE", "D2IMFILE", "PA_V3", "FGSLOCK", "GYROMODE", "PROPOSID", ] # For grism DEFAULT_EXT_KEYS = [ "EXTNAME", "EXTVER", "MDRIZSKY", "CRPIX1", "CRPIX2", "CRVAL1", "CRVAL2", "CD1_1", "CD1_2", "CD2_1", "CD2_2", "PC1_1", "PC1_2", "PC2_1", "PC2_2", "CDELT1", "CDELT2", "CUNIT1", "CUNIT2", "CTYPE1", "CTYPE2", "RADESYS", "LONPOLE", "LATPOLE", "IDCTAB", "D2IMEXT", "WCSNAME", "PHOTMODE", "ORIENTAT", "CCDCHIP", ]
[docs]def flt_to_dict( fobj, primary_keys=DEFAULT_PRIMARY_KEYS, extensions=[("SCI", i + 1) for i in range(2)], ext_keys=DEFAULT_EXT_KEYS, ): """ Parse basic elements from a FLT/FLC header to a dictionary Parameters ---------- fobj : `~astropy.io.fits.HDUList` FITS object primary_keys : list Keywords to extract from the primary extension (0). extensions : list List of additional extension names / indices. ext_keys : list Keywords to extract from the extension headers. Returns ------- flt_dict : dict """ import astropy.time flt_dict = OrderedDict() flt_dict["timestamp"] = astropy.time.Time.now().iso h0 = fobj[0].header # Primary keywords for k in primary_keys: if k in h0: flt_dict[k] = h0[k] # Grism keys for k in h0: if k.startswith("GSKY"): flt_dict[k] = h0[k] # WCS, etc. keywords from SCI extensions flt_dict["extensions"] = OrderedDict() count = 0 for ext in extensions: if ext in fobj: d_i = OrderedDict() h_i = fobj[ext].header for k in ext_keys: if k in h_i: d_i[k] = h_i[k] # Grism keys for k in h_i: if k.startswith("GSKY"): d_i[k] = h_i[k] count += 1 flt_dict["extensions"][count] = d_i return flt_dict
[docs]def mod_dq_bits(value, okbits=32 + 64 + 512, badbits=0, verbose=False): """ Modify bit flags from a DQ array For WFC3/IR, the following DQ bits can usually be unset: 32, 64: these pixels usually seem OK 512: blobs not relevant for grism exposures Parameters ---------- value : int, `~numpy.ndarray` Input DQ value okbits : int Bits to unset badbits : int Bits to set verbose : bool Print some information Returns ------- new_value : int, `~numpy.ndarray` """ if verbose: print(f"Unset bits: {np.binary_repr(okbits)}") print(f"Set bits: {np.binary_repr(badbits)}") return (value & ~okbits) | badbits
[docs]def detect_with_photutils(sci, err=None, dq=None, seg=None, detect_thresh=2., npixels=8, grow_seg=5, gauss_fwhm=2., gsize=3, wcs=None, save_detection=False, root='mycat', background=None, gain=None, AB_zeropoint=0., rename_columns={'xcentroid': 'x_flt', 'ycentroid': 'y_flt', 'ra_icrs_centroid': 'ra', 'dec_icrs_centroid': 'dec'}, overwrite=True, verbose=True): r""" Use `~photutils` to detect objects and make segmentation map .. note:: Deprecated in favor of sep catalogs in `~grizli.prep`. Parameters ---------- sci : `~numpy.ndarray` err, dq, seg : TBD detect_thresh : float Detection threshold, in :math:`\sigma` grow_seg : int Number of pixels to grow around the perimeter of detected objects witha maximum filter gauss_fwhm : float FWHM of Gaussian convolution kernel that smoothes the detection image. verbose : bool Print logging information to the terminal save_detection : bool Save the detection images and catalogs wcs : `~astropy.wcs.WCS` WCS object passed to `photutils.source_properties` used to compute sky coordinates of detected objects. Returns ------- catalog : `~astropy.table.Table` Object catalog with the default parameters. """ import scipy.ndimage as nd from photutils import detect_threshold, detect_sources, SegmentationImage from photutils import source_properties import astropy.io.fits as pyfits from astropy.table import Column from astropy.stats import sigma_clipped_stats, gaussian_fwhm_to_sigma from astropy.convolution import Gaussian2DKernel # DQ masks mask = sci == 0 if dq is not None: mask |= dq > 0 # Detection threshold if err is None: threshold = detect_threshold(sci, snr=detect_thresh, mask=mask) else: threshold = (detect_thresh * err) * (~mask) threshold[mask] = np.median(threshold[~mask]) if seg is None: # Run the source detection and create the segmentation image # Gaussian kernel sigma = gauss_fwhm * gaussian_fwhm_to_sigma # FWHM = 2. kernel = Gaussian2DKernel(sigma, x_size=gsize, y_size=gsize) kernel.normalize() if verbose: print( "{0}: photutils.detect_sources (detect_thresh={1:.1f}, grow_seg={2:d}, gauss_fwhm={3:.1f}, ZP={4:.1f})".format( root, detect_thresh, grow_seg, gauss_fwhm, AB_zeropoint ) ) # Detect sources segm = detect_sources( sci * (~mask), threshold, npixels=npixels, filter_kernel=kernel ) grow = nd.maximum_filter(segm.data, grow_seg) seg = np.asarray(grow,dtype=np.float32) else: # Use the supplied segmentation image segm = SegmentationImage(seg) # Source properties catalog if verbose: print("{0}: photutils.source_properties".format(root)) props = source_properties( sci, segm, error=threshold / detect_thresh, mask=mask, background=background, wcs=wcs, ) catalog = props.to_table() # Mag columns mag = AB_zeropoint - 2.5 * np.log10(catalog["source_sum"]) mag._name = "mag" catalog.add_column(mag) try: logscale = 2.5 / np.log(10) mag_err = logscale * catalog["source_sum_err"] / catalog["source_sum"] except: mag_err = np.zeros_like(mag) - 99 mag_err._name = "mag_err" catalog.add_column(mag_err) # Rename some catalog columns for key in rename_columns.keys(): if key not in catalog.colnames: continue catalog.rename_column(key, rename_columns[key]) if verbose: print("Rename column: {0} -> {1}".format(key, rename_columns[key])) # Done! if verbose: print( NO_NEWLINE + ( "{0}: photutils.source_properties - {1:d} objects".format( root, len(catalog) ) ) ) # Save outputs? if save_detection: seg_file = root + ".detect_seg.fits" seg_cat = root + ".detect.cat" if verbose: print("{0}: save {1}, {2}".format(root, seg_file, seg_cat)) if wcs is not None: header = wcs.to_header(relax=True) else: header = None pyfits.writeto(seg_file, data=seg, header=header, overwrite=overwrite) if os.path.exists(seg_cat) & overwrite: os.remove(seg_cat) catalog.write(seg_cat, format="ascii.commented_header") return catalog, seg
[docs]def safe_invert(arr): """ Version-safe matrix inversion using `numpy.linalg` or `numpy.matrix.I` Parameters ---------- arr : array_like The input array to be inverted. Returns ------- _inv : ndarray The inverted array. """ try: from numpy.linalg import inv _inv = inv(arr) except: _inv = np.matrix(arr).I.A return _inv
[docs]def nmad(data): """ Normalized NMAD = 1.4826022 * `~.astropy.stats.median_absolute_deviation` Parameters ---------- data: array-like The input data array. Returns ------- nmad: float The normalized median absolute deviation of the input data. """ import astropy.stats return 1.4826022 * astropy.stats.median_absolute_deviation(data)
[docs]def get_line_wavelengths(): """ Get a dictionary of common emission line wavelengths and line ratios Returns ------- line_wavelengths, line_ratios : dict Keys are common to both dictionaries and are simple names for lines and line complexes. Values are lists of line wavelengths and line ratios. >>> from grizli.utils import get_line_wavelengths >>> line_wavelengths, line_ratios = get_line_wavelengths() >>> print(line_wavelengths['Ha'], line_ratios['Ha']) [6564.61] [1.0] >>> print(line_wavelengths['OIII'], line_ratios['OIII']) [5008.24, 4960.295] [2.98, 1] Includes some additional combined line complexes useful for redshift fits: >>> from grizli.utils import get_line_wavelengths >>> line_wavelengths, line_ratios = get_line_wavelengths() >>> key = 'Ha+SII+SIII+He' >>> print(line_wavelengths[key], '\\n', line_ratios[key]) [6564.61, 6718.29, 6732.67, 9068.6, 9530.6, 10830.0] [1.0, 0.1, 0.1, 0.05, 0.122, 0.04] """ line_wavelengths = OrderedDict() line_ratios = OrderedDict() # Paschen: https://www.gemini.edu/sciops/instruments/nearir-resources/astronomical-lines/h-lines # Rh = 0.0010967757 # k = Rh * (1/n0**2 - 1/n**2) # wave = 1./k # Angstroms # Pfund n0=5 line_wavelengths["PfA"] = [74598.8] line_ratios["PfA"] = [1.0] line_wavelengths["PfB"] = [46537.9] line_ratios["PfB"] = [1.0] line_wavelengths["PfG"] = [37405.7] line_ratios["PfG"] = [1.0] line_wavelengths["PfD"] = [32970.0] line_ratios["PfD"] = [1.0] line_wavelengths["PfE"] = [30392.1] line_ratios["PfE"] = [1.0] # Brackett n0=4 line_wavelengths["BrA"] = [40522.8] line_ratios["BrA"] = [1.0] line_wavelengths["BrB"] = [26258.8] line_ratios["BrB"] = [1.0] line_wavelengths["BrG"] = [21661.3] line_ratios["BrG"] = [1.0] line_wavelengths["BrD"] = [19451.0] line_ratios["BrD"] = [1.0] line_wavelengths["BrE"] = [18179.2] line_ratios["BrE"] = [1.0] line_wavelengths["BrF"] = [17366.9] line_ratios["BrF"] = [1.0] # Paschen n0=3 line_wavelengths["PaA"] = [18756.3] line_ratios["PaA"] = [1.0] line_wavelengths["PaB"] = [12821.7] line_ratios["PaB"] = [1.0] line_wavelengths["PaG"] = [10941.2] line_ratios["PaG"] = [1.0] line_wavelengths["PaD"] = [10052.2] line_ratios["PaD"] = [1.0] line_wavelengths["Pa8"] = [9548.65] line_ratios["Pa8"] = [1.0] line_wavelengths["Pa9"] = [9231.60] line_ratios["Pa9"] = [1.0] line_wavelengths["Pa10"] = [9017.44] line_ratios["Pa10"] = [1.0] # Balmer n0=2 line_wavelengths["Ha"] = [6564.697] line_ratios["Ha"] = [1.0] line_wavelengths["Hb"] = [4862.738] line_ratios["Hb"] = [1.0] line_wavelengths["Hg"] = [4341.731] line_ratios["Hg"] = [1.0] line_wavelengths["Hd"] = [4102.936] line_ratios["Hd"] = [1.0] line_wavelengths["H7"] = [3971.236] line_ratios["H7"] = [1.0] line_wavelengths["H8"] = [3890.191] line_ratios["H8"] = [1.0] line_wavelengths["H9"] = [3836.511] line_ratios["H9"] = [1.0] line_wavelengths["H10"] = [3799.014] line_ratios["H10"] = [1.0] line_wavelengths["H11"] = [3771.739] line_ratios["H11"] = [1.0] line_wavelengths["H12"] = [3751.255] line_ratios["H12"] = [1.0] # Groves et al. 2011, Table 1 # Osterbrock table 4.4 for H7 to H10 # line_wavelengths['Balmer 10kK'] = [6564.61, 4862.68, 4341.68, 4101.73] # line_ratios['Balmer 10kK'] = [2.86, 1.0, 0.468, 0.259] line_wavelengths["Balmer 10kK"] = [ 6564.61, 4862.68, 4341.68, 4101.73, 3971.198, 3890.166, 3836.485, 3798.987, ] line_ratios["Balmer 10kK"] = [2.86, 1.0, 0.468, 0.259, 0.159, 0.105, 0.0731, 0.0530] # Paschen from Osterbrock, e.g., Pa-beta relative to H-gamma line_wavelengths["Balmer 10kK"] += ( line_wavelengths["PaA"] + line_wavelengths["PaB"] + line_wavelengths["PaG"] + line_wavelengths["PaD"] ) line_ratios["Balmer 10kK"] += [ 0.348 * line_ratios["Balmer 10kK"][i] for i in [1, 2, 3, 4] ] # Osterbrock table 4.4 for H7 to H10 line_wavelengths["Balmer 10kK + MgII"] = line_wavelengths["Balmer 10kK"] + [ 2799.117 ] line_ratios["Balmer 10kK + MgII"] = line_ratios["Balmer 10kK"] + [3.0] # # Paschen from Osterbrock, e.g., Pa-beta relative to H-gamma # line_wavelengths['Balmer 10kK + MgII'] += line_wavelengths['PaA'] + line_wavelengths['PaB'] + line_wavelengths['PaG'] # line_ratios['Balmer 10kK + MgII'] += [0.348 * line_ratios['Balmer 10kK + MgII'][i] for i in [1,2,3]] # With Paschen lines & He 10830 from Glikman 2006 # https://iopscience.iop.org/article/10.1086/500098/pdf # line_wavelengths['Balmer 10kK + MgII'] = [6564.61, 4862.68, 4341.68, 4101.73, 3971.198, 2799.117, 12821.6, 10941.1] # line_ratios['Balmer 10kK + MgII'] = [2.86, 1.0, 0.468, 0.259, 0.16, 3., 2.86*4.8/100, 2.86*1.95/100] # Redden with Calzetti00 if False: from extinction import calzetti00 Av = 1.0 Rv = 3.1 waves = line_wavelengths["Balmer 10kK + MgII"] ratios = line_ratios["Balmer 10kK + MgII"] for Av in [0.5, 1.0, 2.0]: mred = calzetti00(np.array(waves), Av, Rv) fred = 10 ** (-0.4 * mred) key = "Balmer 10kK + MgII Av={0:.1f}".format(Av) line_wavelengths[key] = [w for w in waves] line_ratios[key] = [ratios[i] * fred[i] for i in range(len(waves))] line_wavelengths["Balmer 10kK + MgII Av=0.5"] = [ 6564.61, 4862.68, 4341.68, 4101.73, 3971.198, 2799.117, 12821.6, 10941.1, ] line_ratios["Balmer 10kK + MgII Av=0.5"] = [ 2.009811938798515, 0.5817566641521459, 0.25176970824566913, 0.1338409369665902, 0.08079209880749984, 1.1739297839690317, 0.13092553990513178, 0.05033866127477651, ] line_wavelengths["Balmer 10kK + MgII Av=1.0"] = [ 6564.61, 4862.68, 4341.68, 4101.73, 3971.198, 2799.117, 12821.6, 10941.1, ] line_ratios["Balmer 10kK + MgII Av=1.0"] = [ 1.4123580522157504, 0.33844081628543266, 0.13544441450878067, 0.0691636926953466, 0.04079602018575511, 0.4593703792298591, 0.12486521707058751, 0.045436270735820045, ] line_wavelengths["Balmer 10kK + MgII Av=2.0"] = [ 6564.61, 4862.68, 4341.68, 4101.73, 3971.198, 2799.117, 12821.6, 10941.1, ] line_ratios["Balmer 10kK + MgII Av=2.0"] = [ 0.6974668768037302, 0.11454218612794999, 0.03919912269578289, 0.018469561340758073, 0.010401970393728362, 0.0703403817712615, 0.11357315292894044, 0.03701729780130422, ] ########### # Reddened with Kriek & Conroy dust, tau_V=0.5 line_wavelengths["Balmer 10kK t0.5"] = [6564.61, 4862.68, 4341.68, 4101.73] line_ratios["Balmer 10kK t0.5"] = [ 2.86 * 0.68, 1.0 * 0.55, 0.468 * 0.51, 0.259 * 0.48, ] # Reddened with Kriek & Conroy dust, tau_V=1 line_wavelengths["Balmer 10kK t1"] = [6564.61, 4862.68, 4341.68, 4101.73] line_ratios["Balmer 10kK t1"] = [ 2.86 * 0.46, 1.0 * 0.31, 0.468 * 0.256, 0.259 * 0.232, ] line_wavelengths["OIII-4363"] = [4364.436] line_ratios["OIII-4363"] = [1.0] line_wavelengths["OIII"] = [5008.240, 4960.295] line_ratios["OIII"] = [2.98, 1] # Split doublet, if needed line_wavelengths["OIII-4959"] = [4960.295] line_ratios["OIII-4959"] = [1] line_wavelengths["OIII-5007"] = [5008.240] line_ratios["OIII-5007"] = [1] line_wavelengths["OII"] = [3727.092, 3729.875] line_ratios["OII"] = [1, 1.0] line_wavelengths["OI-5578"] = [5578.89] line_ratios["OI-5578"] = [1] line_wavelengths["OI-6302"] = [6302.046, 6365.535] line_ratios["OI-6302"] = [1, 0.33] line_wavelengths["OI-7776"] = [7776.3] line_ratios["OI-7776"] = [1] line_wavelengths["OI-8448"] = [8448.7] line_ratios["OI-8448"] = [1] line_wavelengths["OI-11290"] = [11290.0] line_ratios["OI-11290"] = [1] # Auroral OII # lines roughly taken from https://arxiv.org/pdf/1610.06939.pdf line_wavelengths["OII-7325"] = [7321.9, 7332.21] line_ratios["OII-7325"] = [1.2, 1.0] line_wavelengths["OII-7323"] = [7321.9] line_ratios["OII-7323"] = [1.0] line_wavelengths["OII-7332"] = [7332.21] line_ratios["OII-7332"] = [1.0] # Weak Ar III in SF galaxies line_wavelengths["ArIII-7138"] = [7137.77] line_ratios["ArIII-7138"] = [1.0] line_wavelengths["ArIII-7753"] = [7753.19] line_ratios["ArIII-7753"] = [1.0] line_wavelengths["NeIII-3867"] = [3869.87] line_ratios["NeIII-3867"] = [1.0] line_wavelengths["NeIII-3968"] = [3968.59] line_ratios["NeIII-3968"] = [1.0] line_wavelengths["NeV-3346"] = [3343.5] line_ratios["NeV-3346"] = [1.0] line_wavelengths["NeVI-3426"] = [3426.85] line_ratios["NeVI-3426"] = [1.0] line_wavelengths["SIII"] = [9071.1, 9533.2][::-1] line_ratios["SIII"] = [1, 2.44][::-1] # Split doublet, if needed line_wavelengths["SIII-9068"] = [9071.1] line_ratios["SIII-9068"] = [1] line_wavelengths["SIII-9531"] = [9533.2] line_ratios["SIII-9531"] = [1] line_wavelengths["SIII-6314"] = [6313.81] line_ratios["SIII-6314"] = [1.0] line_wavelengths["SII"] = [6718.29, 6732.67] line_ratios["SII"] = [1.0, 1.0] line_wavelengths["SII-6717"] = [6718.29] line_ratios["SII-6717"] = [1.0] line_wavelengths["SII-6731"] = [6732.67] line_ratios["SII-6731"] = [1.0] line_wavelengths["SII-4075"] = [4069.75, 4077.5] line_ratios["SII-4075"] = [1.0, 1.0] line_wavelengths["SII-4070"] = [4069.75] line_ratios["SII-4075"] = [1.0] line_wavelengths["SII-4078"] = [4077.5] line_ratios["SII-4078"] = [1.0] line_wavelengths["HeII-4687"] = [4687.5] line_ratios["HeII-4687"] = [1.0] line_wavelengths["HeII-5412"] = [5412.5] line_ratios["HeII-5412"] = [1.0] line_wavelengths["HeII-16923"] = [1.69230e4] line_ratios["HeII-16923"] = [1.0] line_wavelengths["HeI-5877"] = [5877.249] line_ratios["HeI-5877"] = [1.0] line_wavelengths["HeI-3889"] = [3889.75] line_ratios["HeI-3889"] = [1.0] line_wavelengths["HeI-1083"] = [10832.057, 10833.306] line_ratios["HeI-1083"] = [1.0, 1.0] line_wavelengths["HeI-3820"] = [3820.7] line_ratios["HeI-3820"] = [1.0] line_wavelengths["HeI-4027"] = [4027.3] line_ratios["HeI-4027"] = [1.0] line_wavelengths["HeI-4472"] = [4472.7] line_ratios["HeI-4472"] = [1.0] line_wavelengths["HeI-6680"] = [6679.995] line_ratios["HeI-6680"] = [1.0] line_wavelengths["HeI-7065"] = [7067.1] line_ratios["HeI-7065"] = [1.0] line_wavelengths["HeI-8446"] = [8446.7] line_ratios["HeI-8446"] = [1.0] # From CAFE # https://github.com/GOALS-survey/CAFE/blob/master/CAFE/tables/ line_wavelengths["FeII-11128"] = [1.11286e4] line_ratios["FeII-11128"] = [1.0] line_wavelengths["FeII-12570"] = [1.25702e4] line_ratios["FeII-12570"] = [1.0] line_wavelengths["FeII-16440"] = [1.64400e4] line_ratios["FeII-16440"] = [1.0] line_wavelengths["FeII-16877"] = [1.68778e4] line_ratios["FeII-16877"] = [1.0] line_wavelengths["FeII-17418"] = [1.74188e4] line_ratios["FeII-17418"] = [1.0] line_wavelengths["FeII-17418"] = [1.74188e4] line_ratios["FeII-17418"] = [1.0] line_wavelengths["FeII-18362"] = [1.83624e4] line_ratios["FeII-18362"] = [1.0] line_wavelengths["SiVI-19634"] = [1.9634e4] line_ratios["SiVI-19634"] = [1.0] # AGN line? # https://academic.oup.com/pasj/article/63/1/L7/1460068#431992120 line_wavelengths["PII-11886"] = [1.188610e4] line_ratios["PII-11886"] = [1.0] # Osterbrock Table 4.5 # -> N=4 line_wavelengths["HeI-series"] = [ 4472.7, 5877.2, 4027.3, 3820.7, 7067.1, 10833.2, 3889.7, 3188.7, ] line_ratios["HeI-series"] = [1.0, 2.75, 0.474, 0.264, 0.330, 4.42, 2.26, 0.916] line_wavelengths["MgII"] = [2799.117] line_ratios["MgII"] = [1.0] line_wavelengths["CIV-1549"] = [1549.480] line_ratios["CIV-1549"] = [1.0] line_wavelengths["CIII-1906"] = [1906.683] line_ratios["CIII-1906"] = [1.0] line_wavelengths["CIII-1908"] = [1908.734] line_ratios["CIII-1908"] = [1.0] line_wavelengths["CI-9580"] = [9850.26] # leave typo for back compatibility line_ratios["CI-9580"] = [1.0] line_wavelengths["CI-9850"] = [9850.26] line_ratios["CI-9850"] = [1.0] # Sodium D I lines from Davies 2023 # https://arxiv.org/abs/2310.17939v2 line_wavelengths["NaDI"] = [5891.0, 5897.0] line_ratios["NaDI"] = [1.0, 1.0] # Hutchinson # https://iopscience.iop.org/article/10.3847/1538-4357/ab22a2 line_wavelengths["CIII-1906x"] = [1906.683, 1908.734] line_ratios["CIII-1906x"] = [1.5, 1.0] line_wavelengths["OIII-1663"] = [1665.85] line_ratios["OIII-1663"] = [1.0] line_wavelengths["HeII-1640"] = [1640.4] line_ratios["HeII-1640"] = [1.0] line_wavelengths["SiIV+OIV-1398"] = [1398.0] line_ratios["SiIV+OIV-1398"] = [1.0] # Weak line in LEGA-C spectra line_wavelengths["NI-5199"] = [5199.4, 5201.76] line_ratios["NI-5199"] = [1.0, 1.0] line_wavelengths["NII"] = [6549.86, 6585.27][::-1] line_ratios["NII"] = [1.0, 3.0][::-1] line_wavelengths["NII-6549"] = [6549.86] line_ratios["NII-6549"] = [1.0] line_wavelengths["NII-6584"] = [6585.27] line_ratios["NII-6584"] = [1.0] line_wavelengths["NIII-1750"] = [1750.0] line_ratios["NIII-1750"] = [1.0] line_wavelengths["NIV-1487"] = [1487.0] line_ratios["NIV-1487"] = [1.0] line_wavelengths["NV-1240"] = [1240.81] line_ratios["NV-1240"] = [1.0] line_wavelengths["Lya"] = [1215.4] line_ratios["Lya"] = [1.0] line_wavelengths["QSO-UV-lines"] = [ line_wavelengths[k][0] for k in [ "Lya", "CIV-1549", "CIII-1906", "CIII-1908", "OIII-1663", "HeII-1640", "SiIV+OIV-1398", "NV-1240", "NIII-1750", ] ] line_ratios["QSO-UV-lines"] = [1.0, 0.5, 0.1, 0.1, 0.008, 0.09, 0.1, 0.3, 0.05] line_wavelengths["QSO-Narrow-lines"] = [ line_wavelengths[k][0] for k in [ "OII", "OIII-5007", "OIII-4959", "SII-6717", "SII-6731", "OI-6302", "NeIII-3867", "NeVI-3426", "NeV-3346", ] ] line_ratios["QSO-Narrow-lines"] = [ 0.2, 1.6, 1.6 / 2.98, 0.1, 0.1, 0.01, 0.5, 0.2, 0.02, ] # redder lines line_wavelengths["QSO-Narrow-lines"] += line_wavelengths["SIII"] line_ratios["QSO-Narrow-lines"] += [lr * 0.05 for lr in line_ratios["SIII"]] line_wavelengths["QSO-Narrow-lines"] += line_wavelengths["HeI-1083"] line_ratios["QSO-Narrow-lines"] += [0.2] line_wavelengths["Lya+CIV"] = [1215.4, 1549.49] line_ratios["Lya+CIV"] = [1.0, 0.1] line_wavelengths["Gal-UV-lines"] = [ line_wavelengths[k][0] for k in [ "Lya", "CIV-1549", "CIII-1906", "CIII-1908", "OIII-1663", "HeII-1640", "SiIV+OIV-1398", "NV-1240", "NIII-1750", "MgII", ] ] line_ratios["Gal-UV-lines"] = [ 1.0, 0.15, 0.1, 0.1, 0.008, 0.09, 0.1, 0.05, 0.05, 0.1, ] line_wavelengths["Ha+SII"] = [6564.61, 6718.29, 6732.67] line_ratios["Ha+SII"] = [1.0, 1.0 / 10, 1.0 / 10] line_wavelengths["Ha+SII+SIII+He"] = [ 6564.61, 6718.29, 6732.67, 9068.6, 9530.6, 10830.0, ] line_ratios["Ha+SII+SIII+He"] = [ 1.0, 1.0 / 10, 1.0 / 10, 1.0 / 20, 2.44 / 20, 1.0 / 25.0, ] line_wavelengths["Ha+NII+SII+SIII+He"] = [ 6564.61, 6549.86, 6585.27, 6718.29, 6732.67, 9068.6, 9530.6, 10830.0, ] line_ratios["Ha+NII+SII+SIII+He"] = [ 1.0, 1.0 / (4.0 * 4), 3.0 / (4 * 4), 1.0 / 10, 1.0 / 10, 1.0 / 20, 2.44 / 20, 1.0 / 25.0, ] line_wavelengths["Ha+NII+SII+SIII+He+PaB"] = [ 6564.61, 6549.86, 6585.27, 6718.29, 6732.67, 9068.6, 9530.6, 10830.0, 12821, ] line_ratios["Ha+NII+SII+SIII+He+PaB"] = [ 1.0, 1.0 / (4.0 * 4), 3.0 / (4 * 4), 1.0 / 10, 1.0 / 10, 1.0 / 20, 2.44 / 20, 1.0 / 25.0, 1.0 / 10, ] line_wavelengths["Ha+NII+SII+SIII+He+PaB+PaG"] = [ 6564.61, 6549.86, 6585.27, 6718.29, 6732.67, 9068.6, 9530.6, 10830.0, 12821, 10941.1, ] line_ratios["Ha+NII+SII+SIII+He+PaB+PaG"] = [ 1.0, 1.0 / (4.0 * 4), 3.0 / (4 * 4), 1.0 / 10, 1.0 / 10, 1.0 / 20, 2.44 / 20, 1.0 / 25.0, 1.0 / 10, 1.0 / 10 / 2.86, ] line_wavelengths["Ha+NII"] = [6564.61, 6549.86, 6585.27] n2ha = 1.0 / 3 # log NII/Ha ~ -0.6, Kewley 2013 line_ratios["Ha+NII"] = [1.0, 1.0 / 4.0 * n2ha, 3.0 / 4.0 * n2ha] line_wavelengths["OIII+Hb"] = [5008.240, 4960.295, 4862.68] line_ratios["OIII+Hb"] = [2.98, 1, 3.98 / 6.0] # Include more balmer lines line_wavelengths["OIII+Hb+Hg+Hd"] = ( line_wavelengths["OIII"] + line_wavelengths["Balmer 10kK"][1:] ) line_ratios["OIII+Hb+Hg+Hd"] = line_ratios["OIII"] + line_ratios["Balmer 10kK"][1:] # o3hb = 1./6 # for i in range(2, len(line_ratios['Balmer 10kK'])-1): # line_ratios['OIII+Hb+Hg+Hd'][i] *= 3.98*o3hb # Compute as O3/Hb o3hb = 6 for i in range(2): line_ratios["OIII+Hb+Hg+Hd"][i] *= 1.0 / 3.98 * o3hb line_wavelengths["OIII+Hb+Ha"] = [5008.240, 4960.295, 4862.68, 6564.61] line_ratios["OIII+Hb+Ha"] = [2.98, 1, 3.98 / 10.0, 3.98 / 10.0 * 2.86] line_wavelengths["OIII+Hb+Ha+SII"] = [ 5008.240, 4960.295, 4862.68, 6564.61, 6718.29, 6732.67, ] line_ratios["OIII+Hb+Ha+SII"] = [ 2.98, 1, 3.98 / 10.0, 3.98 / 10.0 * 2.86 * 4, 3.98 / 10.0 * 2.86 / 10.0 * 4, 3.98 / 10.0 * 2.86 / 10.0 * 4, ] line_wavelengths["OIII+OII"] = [5008.240, 4960.295, 3729.875] line_ratios["OIII+OII"] = [2.98, 1, 3.98 / 4.0] line_wavelengths["OII+Ne"] = [3729.875, 3869] line_ratios["OII+Ne"] = [1, 1.0 / 5] # Groups of all lines line_wavelengths["full"] = [w for w in line_wavelengths["Balmer 10kK"]] line_ratios["full"] = [w for w in line_ratios["Balmer 10kK"]] line_wavelengths["full"] += line_wavelengths["NII"] line_ratios["full"] += [ 1.0 / 5 / 3.0 * line_ratios["Balmer 10kK"][1] * r for r in line_ratios["NII"] ] line_wavelengths["full"] += line_wavelengths["SII"] line_ratios["full"] += [ 1.0 / 3.8 / 2 * line_ratios["Balmer 10kK"][1] * r for r in line_ratios["SII"] ] # Lines from Hagele 2006, low-Z HII galaxies # SDSS J002101.03+005248.1 line_wavelengths["full"] += line_wavelengths["SIII"] line_ratios["full"] += [ 401.0 / 1000 / 2.44 * line_ratios["Balmer 10kK"][1] * r for r in line_ratios["SIII"] ] # HeI line_wavelengths["full"] += line_wavelengths["HeI-series"] he5877_hb = 127.0 / 1000 / line_ratios["HeI-series"][1] line_ratios["full"] += [he5877_hb * r for r in line_ratios["HeI-series"]] # NeIII line_wavelengths["full"] += line_wavelengths["NeIII-3867"] line_ratios["full"] += [388.0 / 1000 for r in line_ratios["NeIII-3867"]] line_wavelengths["full"] += line_wavelengths["NeIII-3968"] line_ratios["full"] += [290.0 / 1000 for r in line_ratios["NeIII-3968"]] # Add UV lines: MgII/Hb = 3 line_wavelengths["full"] += line_wavelengths["Gal-UV-lines"] line_ratios["full"] += [ r * 3 / line_ratios["Gal-UV-lines"][-1] for r in line_ratios["Gal-UV-lines"] ] # High O32 - low metallicity o32, r23 = 4, 8 o3_hb = r23 / (1 + 1 / o32) line_wavelengths["highO32"] = [w for w in line_wavelengths["full"]] line_ratios["highO32"] = [r for r in line_ratios["full"]] line_wavelengths["highO32"] += line_wavelengths["OIII"] line_ratios["highO32"] += [r * o3_hb / 3.98 for r in line_ratios["OIII"]] line_wavelengths["highO32"] += line_wavelengths["OII"] line_ratios["highO32"] += [r * o3_hb / 2 / o32 for r in line_ratios["OII"]] # Low O32 - low metallicity o32, r23 = 0.3, 4 o3_hb = r23 / (1 + 1 / o32) line_wavelengths["lowO32"] = [w for w in line_wavelengths["full"]] line_ratios["lowO32"] = [r for r in line_ratios["full"]] line_wavelengths["lowO32"] += line_wavelengths["OIII"] line_ratios["lowO32"] += [r * o3_hb / 3.98 for r in line_ratios["OIII"]] line_wavelengths["lowO32"] += line_wavelengths["OII"] line_ratios["lowO32"] += [r * o3_hb / 2 / o32 for r in line_ratios["OII"]] return line_wavelengths, line_ratios
[docs]def emission_line_templates(): """ Testing FSPS line templates """ import numpy as np import matplotlib.pyplot as plt from grizli import utils import fsps sp = fsps.StellarPopulation(imf_type=1, zcontinuous=1) sp_params = {} sp_params["starburst"] = { "sfh": 4, "tau": 0.3, "tage": 0.1, "logzsol": -1, "gas_logz": -1, "gas_logu": -2.5, } sp_params["mature"] = { "sfh": 4, "tau": 0.2, "tage": 0.9, "logzsol": -0.2, "gas_logz": -0.2, "gas_logu": -2.5, } line_templates = {} for t in sp_params: pset = sp_params[t] header = "wave flux\n\n" for p in pset: header += "{0} = {1}\n".format(p, pset[p]) if p == "tage": continue print(p, pset[p]) sp.params[p] = pset[p] spec = {} for neb in [True, False]: sp.params["add_neb_emission"] = neb sp.params["add_neb_continuum"] = neb wave, spec[neb] = sp.get_spectrum(tage=pset["tage"], peraa=True) # plt.plot(wave, spec[neb], alpha=0.5) neb_only = spec[True] - spec[False] neb_only = neb_only / neb_only.max() neb_only = spec[True] / spec[True].max() plt.plot(wave, neb_only, label=t, alpha=0.5) neb_only[neb_only < 1.0e-4] = 0 np.savetxt( "fsps_{0}_lines.txt".format(t), np.array([wave, neb_only]).T, fmt="%.5e", header=header, ) line_templates[t] = utils.SpectrumTemplate( wave=wave, flux=neb_only, name="fsps_{0}_lines".format(t) )
[docs]def pah33(wave_grid): """ Set of 3.3 micron PAH lines from Li et al. 2020 Parameters ---------- wave_grid : array-like Wavelength grid for the templates. Returns ------- pah_templates : list List of `~grizli.utils.SpectrumTemplate` templates for three components around 3.3 microns """ pah_templates = {} for lc, lw in zip([3.29, 3.40, 3.47], [0.043, 0.031, 0.100]): ti = pah_line_template(wave_grid, center_um=lc, fwhm=lw) pah_templates[ti.name] = ti return pah_templates
[docs]def pah_line_template(wave_grid, center_um=3.29, fwhm=0.043): """ Make a template for a broad PAH line with a Drude profile Default parameters in Lai et al. 2020 https://iopscience.iop.org/article/10.3847/1538-4357/abc002/pdf from Tokunaga et al. 1991 Drude equation and normalization from Yamada et al. 2013 Parameters ---------- wave_grid : array-like Wavelength grid in angstroms center_um : float Central wavelength in microns fwhm : float Drude profile FWHM in microns Returns ------- pah_templ : `~grizli.utils.SpectrumTemplate` Template with the PAH feature """ br = 1.0 gamma_width = fwhm / center_um Iv = br * gamma_width ** 2 Iv /= ( wave_grid / 1.0e4 / center_um - center_um * 1.0e4 / wave_grid ) ** 2 + gamma_width ** 2 Inorm = np.pi * 2.99e14 / 2.0 * br * gamma_width / center_um Iv *= 1 / Inorm # Flambda Ilam = Iv * 2.99e18 / (wave_grid) ** 2 pah_templ = SpectrumTemplate( wave=wave_grid, flux=Ilam, name=f"line PAH-{center_um:.2f}" ) return pah_templ
[docs]class SpectrumTemplate(object): def __init__( self, wave=None, flux=None, central_wave=None, fwhm=None, velocity=False, fluxunits=FLAMBDA_CGS, waveunits=u.angstrom, name="template", lorentz=False, err=None, ): r""" Container for template spectra. Parameters ---------- wave : array-like Wavelength In `astropy.units.Angstrom`. flux : float array-like If float, then the integrated flux of a Gaussian line. If array, then f-lambda flux density. central_wave, fwhm : float Initialize the template with a Gaussian at this wavelength (in `astropy.units.Angstrom`.) that has an integrated flux of `flux` and `fwhm` in `astropy.units.Angstrom` or `km/s` for `velocity=True`. velocity : bool ``fwhm`` is a velocity in `km/s`. fluxunits : astropy.units.Unit Units of the flux. Default is `FLAMBDA_CGS` (1e-17 erg/s/cm^2/Angstrom). waveunits : astropy.units.Unit Units of the wavelength. Default is Angstrom. name : str Name of the template. Default is "template". lorentz : bool Make a Lorentzian line instead of a Gaussian. err : float array-like, optional Error on the flux. Attributes ---------- wave, flux : array-like Passed from the input parameters or generated/modified later. Methods ------- __add__, __mul__ : Addition and multiplication of templates. Examples -------- .. plot:: :include-source: import matplotlib.pyplot as plt ha = SpectrumTemplate(central_wave=6563., fwhm=10) plt.plot(ha.wave, ha.flux) ha_z = ha.zscale(0.1) plt.plot(ha_z.wave, ha_z.flux, label='z=0.1') plt.legend() plt.xlabel(r'$\lambda$') plt.xlim(6000, 7500) plt.show() """ self.wave = wave if wave is not None: self.wave = np.asarray(wave,dtype=np.float64) self.flux = flux if flux is not None: self.flux = np.asarray(flux,dtype=np.float64) if err is not None: self.err = np.asarray(err,dtype=np.float64) else: self.err = None self.fwhm = None self.velocity = None self.fluxunits = fluxunits self.waveunits = waveunits self.name = name if (central_wave is not None) & (fwhm is not None): self.fwhm = fwhm self.velocity = velocity self.wave, self.flux = self.make_gaussian( central_wave, fwhm, wave_grid=wave, velocity=velocity, max_sigma=50, lorentz=lorentz, ) self.fnu_units = FNU_CGS self.to_fnu()
[docs] @staticmethod def make_gaussian( central_wave, fwhm, max_sigma=5, step=0.1, wave_grid=None, velocity=False, clip=1.0e-6, lorentz=False, ): """ Make Gaussian template Parameters ---------- central_wave, fwhm : None or float or array-like Central wavelength and FWHM of the desired Gaussian velocity : bool `fwhm` is a velocity. max_sigma, step : float Generated wavelength array is >>> rms = fwhm/2.35 >>> xgauss = np.arange(-max_sigma, max_sigma, step)*rms+central_wave clip : float Clip values where the value of the gaussian function is less than `clip` times its maximum (i.e., `1/sqrt(2*pi*sigma**2)`). lorentz : bool Make a Lorentzian line instead of a Gaussian. Returns ------- wave, flux : array-like Wavelength and flux of a Gaussian line """ import astropy.constants as const from astropy.modeling.models import Lorentz1D if hasattr(fwhm, "unit"): rms = fwhm.value / 2.35 velocity = u.physical.get_physical_type(fwhm.unit) == "speed" if velocity: rms = central_wave * (fwhm / const.c.to(KMS)).value / 2.35 else: rms = fwhm.value / 2.35 else: if velocity: rms = central_wave * (fwhm / const.c.to(KMS).value) / 2.35 else: rms = fwhm / 2.35 if wave_grid is None: # print('xxx line', central_wave, max_sigma, rms) wave_grid = np.arange(-max_sigma, max_sigma, step) * rms wave_grid += central_wave wave_grid = np.hstack([91.0, wave_grid, 1.0e8]) if lorentz: if velocity: use_fwhm = central_wave * (fwhm / const.c.to(KMS).value) else: use_fwhm = fwhm lmodel = Lorentz1D(amplitude=1, x_0=central_wave, fwhm=use_fwhm) line = lmodel(wave_grid) line[0:2] = 0 line[-2:] = 0 line /= np.trapz(line, wave_grid) peak = line.max() else: # Gaussian line = np.exp(-((wave_grid - central_wave) ** 2) / 2 / rms ** 2) peak = np.sqrt(2 * np.pi * rms ** 2) line *= 1.0 / peak # np.sqrt(2*np.pi*rms**2) line[line < 1.0 / peak * clip] = 0 return wave_grid, line
# self.wave = xgauss # self.flux = gaussian
[docs] def zscale(self, z, scalar=1, apply_igm=True): """ Redshift the template and multiply by a scalar. Parameters ---------- z : float Redshift to use. scalar : float Multiplicative factor. Additional factor of 1/(1+z) is implicit. apply_igm : bool Apply the intergalactic medium (IGM) attenuation correction. Returns ------- new_spectrum : `~grizli.utils.SpectrumTemplate` Redshifted and scaled spectrum. """ if apply_igm: try: import eazy.igm igm = eazy.igm.Inoue14() igmz = igm.full_IGM(z, self.wave * (1 + z)) except: igmz = 1.0 else: igmz = 1.0 return SpectrumTemplate( wave=self.wave * (1 + z), flux=self.flux * scalar / (1 + z) * igmz )
def __add__(self, spectrum): """ Add two templates together The new wavelength array is the union of both input spectra and each input spectrum is linearly interpolated to the final grid. Parameters ---------- spectrum : `~grizli.utils.SpectrumTemplate` Returns ------- new_spectrum : `~grizli.utils.SpectrumTemplate` """ new_wave = np.unique(np.append(self.wave, spectrum.wave)) new_wave.sort() new_flux = np.interp(new_wave, self.wave, self.flux) new_flux += np.interp(new_wave, spectrum.wave, spectrum.flux) out = SpectrumTemplate(wave=new_wave, flux=new_flux) out.fwhm = spectrum.fwhm return out def __mul__(self, scalar): """ Multiply spectrum by a scalar value Parameters ---------- scalar : float Factor to multipy to `self.flux`. Returns ------- new_spectrum : `~grizli.utils.SpectrumTemplate` """ out = SpectrumTemplate(wave=self.wave, flux=self.flux * scalar) out.fwhm = self.fwhm return out
[docs] def to_fnu(self, fnu_units=FNU_CGS): """ Make fnu version of the template. Sets the `flux_fnu` attribute, assuming that the wavelength is given in Angstrom and the flux is given in flambda: >>> flux_fnu = self.flux * self.wave**2 / 3.e18 """ # import astropy.constants as const # flux_fnu = self.flux * self.wave**2 / 3.e18 # flux_fnu = (self.flux*self.fluxunits*(self.wave*self.waveunits)**2/const.c).to(FNU_CGS) #, if (FNU_CGS.__str__() == "erg / (cm2 Hz s)") & ( self.fluxunits.__str__() == "erg / (Angstrom cm2 s)" ): # Faster flux_fnu = self.flux * self.wave ** 2 / 2.99792458e18 * fnu_units if self.err is not None: err_fnu = self.err * self.wave ** 2 / 2.99792458e18 * fnu_units else: # Use astropy conversion flux_fnu = (self.flux * self.fluxunits).to( fnu_units, equivalencies=u.spectral_density(self.wave * self.waveunits) ) if self.err is not None: err_fnu = (self.err * self.fluxunits).to( fnu_units, equivalencies=u.spectral_density(self.wave * self.waveunits), ) self.fnu_units = fnu_units self.flux_fnu = flux_fnu.value if self.err is not None: self.err_fnu = err_fnu.value else: self.err_fnu = None
[docs] def integrate_filter(self, filter, abmag=False, use_wave="filter"): """ Integrate the template through an `~eazy.FilterDefinition` filter object. Parameters ---------- filter : `~pysynphot.ObsBandpass` Or any object that has `wave` and `throughput` attributes, with the former in the same units as the input spectrum. abmag : bool Return AB magnitude rather than fnu flux use_wave : str, optional Determines whether to interpolate the template to the filter wavelengths or the spectrum wavelengths. Default is 'filter'. Returns ------- temp_flux : float Examples -------- Compute the WFC3/IR F140W AB magnitude of a pure emission line at the 5-sigma 3D-HST line detection limit (5e-17 erg/s/cm2): >>> import numpy as np >>> from grizli.utils import SpectrumTemplate >>> from eazy.filters import FilterDefinition >>> import pysynphot as S >>> line = SpectrumTemplate(central_wave=1.4e4, fwhm=150., velocity=True)*5.e-17 >>> filter = FilterDefinition(bp=S.ObsBandpass('wfc3,ir,f140w')) >>> fnu = line.integrate_filter(filter) >>> print('AB mag = {0:.3f}'.format(-2.5*np.log10(fnu)-48.6)) AB mag = 26.619 """ INTEGRATOR = np.trapz try: from .utils_numba.interp import interp_conserve_c interp = interp_conserve_c except ImportError: interp = np.interp # wz = self.wave*(1+z) nonzero = filter.throughput > 0 if ( (filter.wave[nonzero].min() > self.wave.max()) | (filter.wave[nonzero].max() < self.wave.min()) | (filter.wave[nonzero].min() < self.wave.min()) ): if self.err is None: return 0.0 else: return 0.0, 0.0 if use_wave == "filter": # Interpolate to filter wavelengths integrate_wave = filter.wave integrate_templ = interp( filter.wave.astype(np.float64), self.wave, self.flux_fnu, left=0, right=0, ) if self.err is not None: templ_ivar = ( 1.0 / interp(filter.wave.astype(np.float64), self.wave, self.err_fnu) ** 2 ) templ_ivar[~np.isfinite(templ_ivar)] = 0 integrate_weight = ( filter.throughput / filter.wave * templ_ivar / filter.norm ) else: integrate_weight = filter.throughput / filter.wave else: # Interpolate to spectrum wavelengths integrate_wave = self.wave integrate_templ = self.flux_fnu # test = nonzero test = np.isfinite(filter.throughput) interp_thru = interp( integrate_wave, filter.wave[test], filter.throughput[test], left=0, right=0, ) if self.err is not None: templ_ivar = 1 / self.err_fnu ** 2 templ_ivar[~np.isfinite(templ_ivar)] = 0 integrate_weight = ( interp_thru / integrate_wave * templ_ivar / filter.norm ) else: integrate_weight = interp_thru / integrate_wave # /templ_err**2 if hasattr(filter, "norm") & (self.err is None): filter_norm = filter.norm else: # e.g., pysynphot bandpass filter_norm = INTEGRATOR(integrate_weight, integrate_wave) # f_nu/lam dlam == f_nu d (ln nu) temp_flux = ( INTEGRATOR(integrate_templ * integrate_weight, integrate_wave) / filter_norm ) if self.err is not None: temp_err = 1 / np.sqrt(filter_norm) if abmag: temp_mag = -2.5 * np.log10(temp_flux) - 48.6 return temp_mag else: if self.err is not None: return temp_flux, temp_err else: return temp_flux
@property def eazy(self): """ Convert to `eazy.template.Template` object """ import eazy.templates templ = eazy.templates.Template(arrays=(self.wave, self.flux), name=self.name) return templ
[docs]def load_templates( fwhm=400, line_complexes=True, stars=False, full_line_list=DEFAULT_LINE_LIST, continuum_list=None, fsps_templates=False, alf_template=False, lorentz=False, ): """ Generate a list of templates for fitting to the grism spectra The different sets of continuum templates are stored in >>> temp_dir = os.path.join(GRIZLI_PATH, 'templates') Parameters ---------- fwhm : float, optional FWHM of a Gaussian, in km/s, that is convolved with the emission line templates. If too narrow, then can see pixel effects in the fits as a function of redshift. Default is 400. line_complexes : bool, optional Generate line complex templates with fixed flux ratios rather than individual lines. This is useful for the redshift fits where there would be redshift degeneracies if the line fluxes for individual lines were allowed to vary completely freely. See the list of available lines and line groups in `~grizli.utils.get_line_wavelengths`. Currently, `line_complexes=True` generates the following groups: Ha+NII+SII+SIII+He OIII+Hb OII+Ne stars : bool, optional Get stellar templates rather than galaxies + lines. Default is False. full_line_list : None or list, optional Full set of lines to try. The default is set in the global variable `~grizli.utils.DEFAULT_LINE_LIST`. The full list of implemented lines is in `~grizli.utils.get_line_wavelengths`. continuum_list : None or list, optional Override the default continuum templates if None. fsps_templates : bool, optional If True, get the FSPS NMF templates. Default is False. alf_template : bool, optional If True, include Alf templates. Default is False. lorentz : bool, optional If True, use Lorentzian line profiles instead of Gaussian. Default is False. Returns ------- temp_list : dictionary of `~grizli.utils.SpectrumTemplate` objects Output template list """ if stars: # templates = glob.glob('%s/templates/Pickles_stars/ext/*dat' %(GRIZLI_PATH)) # templates = [] # for t in 'obafgkmrw': # templates.extend( glob.glob('%s/templates/Pickles_stars/ext/uk%s*dat' %(os.getenv('THREEDHST'), t))) # templates.extend(glob.glob('%s/templates/SPEX/spex-prism-M*txt' %(os.getenv('THREEDHST')))) # templates.extend(glob.glob('%s/templates/SPEX/spex-prism-[LT]*txt' %(os.getenv('THREEDHST')))) # # #templates = glob.glob('/Users/brammer/Downloads/templates/spex*txt') # templates = glob.glob('bpgs/*ascii') # info = catIO.Table('bpgs/bpgs.info') # type = np.array([t[:2] for t in info['type']]) # templates = [] # for t in 'OBAFGKM': # test = type == '-%s' %(t) # so = np.argsort(info['type'][test]) # templates.extend(info['file'][test][so]) # # temp_list = OrderedDict() # for temp in templates: # #data = np.loadtxt('bpgs/'+temp, unpack=True) # data = np.loadtxt(temp, unpack=True) # #data[0] *= 1.e4 # spex # scl = np.interp(5500., data[0], data[1]) # name = os.path.basename(temp) # #ix = info['file'] == temp # #name='%5s %s' %(info['type'][ix][0][1:], temp.split('.as')[0]) # print(name) # temp_list[name] = utils.SpectrumTemplate(wave=data[0], # flux=data[1]/scl) # np.save('stars_bpgs.npy', [temp_list]) # tall = np.load(os.path.join(GRIZLI_PATH, # 'templates/stars.npy'))[0] # # return tall # # temp_list = OrderedDict() # for k in tall: # if k.startswith('uk'): # temp_list[k] = tall[k] # # return temp_list # # for t in 'MLT': # for k in tall: # if k.startswith('spex-prism-'+t): # temp_list[k] = tall[k] # # return temp_list # return temp_list templates = [ "M6.5.txt", "M8.0.txt", "L1.0.txt", "L3.5.txt", "L6.0.txt", "T2.0.txt", "T6.0.txt", "T7.5.txt", ] templates = ["stars/" + t for t in templates] else: # Intermediate and very old # templates = ['templates/EAZY_v1.0_lines/eazy_v1.0_sed3_nolines.dat', # 'templates/cvd12_t11_solar_Chabrier.extend.skip10.dat'] templates = ["eazy_intermediate.dat", "cvd12_t11_solar_Chabrier.dat"] # Post starburst # templates.append('templates/UltraVISTA/eazy_v1.1_sed9.dat') templates.append("post_starburst.dat") # Very blue continuum # templates.append('templates/YoungSB/erb2010_continuum.dat') templates.append("erb2010_continuum.dat") # Test new templates # templates = ['templates/erb2010_continuum.dat', # 'templates/fsps/tweak_fsps_temp_kc13_12_006.dat', # 'templates/fsps/tweak_fsps_temp_kc13_12_008.dat'] if fsps_templates: # templates = ['templates/fsps/tweak_fsps_temp_kc13_12_0{0:02d}.dat'.format(i+1) for i in range(12)] templates = [ "fsps/fsps_QSF_12_v3_nolines_0{0:02d}.dat".format(i + 1) for i in range(12) ] # templates = ['fsps/fsps_QSF_7_v3_nolines_0{0:02d}.dat'.format(i+1) for i in range(7)] if alf_template: templates.append("alf_SSP.dat") if continuum_list is not None: templates = continuum_list temp_list = OrderedDict() for temp in templates: data = np.loadtxt(os.path.join(GRIZLI_PATH, "templates", temp), unpack=True) # scl = np.interp(5500., data[0], data[1]) scl = 1.0 name = temp # os.path.basename(temp) temp_list[name] = SpectrumTemplate(wave=data[0], flux=data[1] / scl, name=name) temp_list[name].name = name if stars: return temp_list # Emission lines: line_wavelengths, line_ratios = get_line_wavelengths() if line_complexes: # line_list = ['Ha+SII', 'OIII+Hb+Ha', 'OII'] # line_list = ['Ha+SII', 'OIII+Hb', 'OII'] # line_list = ['Ha+NII+SII+SIII+He+PaB', 'OIII+Hb', 'OII+Ne', 'Lya+CIV'] # line_list = ['Ha+NII+SII+SIII+He+PaB', 'OIII+Hb+Hg+Hd', 'OII+Ne', 'Lya+CIV'] line_list = [ "Ha+NII+SII+SIII+He+PaB", "OIII+Hb+Hg+Hd", "OII+Ne", "Gal-UV-lines", ] else: if full_line_list is None: line_list = DEFAULT_LINE_LIST else: line_list = full_line_list # line_list = ['Ha', 'SII'] # Use FSPS grid for lines wave_grid = None # if fsps_templates: # wave_grid = data[0] # else: # wave_grid = None for li in line_list: scl = line_ratios[li] / np.sum(line_ratios[li]) for i in range(len(scl)): if ("O32" in li) & (np.abs(line_wavelengths[li][i] - 2799) < 2): fwhm_i = 2500 lorentz_i = True else: fwhm_i = fwhm lorentz_i = lorentz line_i = SpectrumTemplate( wave=wave_grid, central_wave=line_wavelengths[li][i], flux=None, fwhm=fwhm_i, velocity=True, lorentz=lorentz_i, ) if i == 0: line_temp = line_i * scl[i] else: line_temp = line_temp + line_i * scl[i] name = "line {0}".format(li) line_temp.name = name temp_list[name] = line_temp return temp_list
[docs]def load_beta_templates(wave=np.arange(400, 2.5e4), betas=[-2, -1, 0]): """ Step-function templates with f_lambda ~ (wave/1216.)**beta Parameters ---------- wave: array_like The wavelength grid. beta: float The power-law index. Returns ------- t0: dict A dictionary containing the step-function templates. """ t0 = {} for beta in betas: key = "beta {0}".format(beta) t0[key] = SpectrumTemplate(wave=wave, flux=(wave / 1216.0) ** beta) return t0
[docs]def load_quasar_templates( broad_fwhm=2500, narrow_fwhm=1200, broad_lines=[ "HeI-5877", "MgII", "Lya", "CIV-1549", "CIII-1906", "CIII-1908", "OIII-1663", "HeII-1640", "SiIV+OIV-1398", "NIV-1487", "NV-1240", "PaB", "PaG", ], narrow_lines=[ "NIII-1750", "OII", "OIII", "SII", "OI-6302", "OIII-4363", "NeIII-3867", "NeVI-3426", "NeV-3346", "OII-7325", "ArIII-7138", "SIII", "HeI-1083", ], include_feii=True, slopes=[-2.8, 0, 2.8], uv_line_complex=True, fixed_narrow_lines=False, t1_only=False, nspline=13, Rspline=30, betas=None, include_reddened_balmer_lines=False, ): """ Make templates suitable for fitting broad-line quasars Parameters ---------- broad_fwhm : float, optional Full width at half maximum of the broad lines. Default is 2500. narrow_fwhm : float, optional Full width at half maximum of the narrow lines. Default is 1200. broad_lines : list, optional List of broad lines to include in the templates. narrow_lines : list, optional List of narrow lines to include in the templates. include_feii : bool, optional Whether to include Fe II templates. Default is True. slopes : list, optional List of slopes for linear continua. Default is [-2.8, 0, 2.8]. uv_line_complex : bool, optional Whether to include UV line complex templates. Default is True. fixed_narrow_lines : bool, optional Whether to fix the narrow lines. Default is False. t1_only : bool, optional Whether to only include t1 templates. Default is False. nspline : int, optional Number of spline continua templates. Default is 13. Rspline : int, optional Resolution of the spline continua templates. Default is 30. betas : list, optional List of beta values for beta templates. Default is None. include_reddened_balmer_lines : bool, optional Whether to include reddened Balmer lines. Default is False. Returns ------- t0 : OrderedDict Dictionary of templates for t0. t1 : OrderedDict Dictionary of templates for t1. """ from collections import OrderedDict import scipy.ndimage as nd t0 = OrderedDict() t1 = OrderedDict() broad1 = load_templates( fwhm=broad_fwhm, line_complexes=False, stars=False, full_line_list=["Ha", "Hb", "Hg", "Hd", "H7", "H8", "H9", "H10"] + broad_lines, continuum_list=[], fsps_templates=False, alf_template=False, lorentz=True, ) narrow1 = load_templates( fwhm=400, line_complexes=False, stars=False, full_line_list=narrow_lines, continuum_list=[], fsps_templates=False, alf_template=False, ) if fixed_narrow_lines: if t1_only: narrow0 = narrow1 else: narrow0 = load_templates( fwhm=narrow_fwhm, line_complexes=False, stars=False, full_line_list=["QSO-Narrow-lines"], continuum_list=[], fsps_templates=False, alf_template=False, ) else: narrow0 = load_templates( fwhm=narrow_fwhm, line_complexes=False, stars=False, full_line_list=narrow_lines, continuum_list=[], fsps_templates=False, alf_template=False, ) if t1_only: broad0 = broad1 else: if uv_line_complex: full_line_list = ["Balmer 10kK + MgII Av=0.5", "QSO-UV-lines"] else: full_line_list = ["Balmer 10kK + MgII Av=0.5"] if include_reddened_balmer_lines: line_wavelengths, line_ratios = get_line_wavelengths() if "Balmer 10kK + MgII Av=1.0" in line_wavelengths: full_line_list += ["Balmer 10kK + MgII"] full_line_list += ["Balmer 10kK + MgII Av=1.0"] full_line_list += ["Balmer 10kK + MgII Av=2.0"] broad0 = load_templates( fwhm=broad_fwhm, line_complexes=False, stars=False, full_line_list=full_line_list, continuum_list=[], fsps_templates=False, alf_template=False, lorentz=True, ) for k in broad0: t0[k] = broad0[k] for k in broad1: t1[k] = broad1[k] for k in narrow0: t0[k] = narrow0[k] for k in narrow1: t1[k] = narrow1[k] # Fe II if include_feii: feii_wave, feii_flux = np.loadtxt( os.path.dirname(__file__) + "/data/templates/FeII_VeronCetty2004.txt", unpack=True, ) # smoothing, in units of input velocity resolution feii_kern = broad_fwhm / 2.3548 / 75.0 feii_sm = nd.gaussian_filter(feii_flux, feii_kern) t0["FeII-VC2004"] = t1["FeII-VC2004"] = SpectrumTemplate( wave=feii_wave, flux=feii_sm, name="FeII-VC2004" ) # Linear continua # cont_wave = np.arange(400, 2.5e4) # for slope in slopes: # key = 'slope {0}'.format(slope) # t0[key] = t1[key] = SpectrumTemplate(wave=cont_wave, flux=(cont_wave/6563.)**slope) if Rspline is not None: wspline = np.arange(4200, 2.5e4, 10) df_spl = log_zgrid(zr=[wspline[0], wspline[-1]], dz=1.0 / Rspline) bsplines = bspline_templates(wspline, df=len(df_spl) + 2, log=True, clip=0.0001) for key in bsplines: t0[key] = t1[key] = bsplines[key] elif nspline > 0: # Spline continua cont_wave = np.arange(5000, 2.4e4) bsplines = bspline_templates(cont_wave, df=nspline, log=True) for key in bsplines: t0[key] = t1[key] = bsplines[key] elif betas is not None: btemp = load_beta_templates(wave=np.arange(400, 2.5e4), betas=betas) for key in btemp: t0[key] = t1[key] = btemp[key] else: # Observed frame steps onedR = -nspline wlim = [5000, 18000.0] bin_steps, step_templ = step_templates(wlim=wlim, R=onedR, round=10) for key in step_templ: t0[key] = t1[key] = step_templ[key] # t0['blue'] = t1['blue'] = SpectrumTemplate(wave=cont_wave, flux=(cont_wave/6563.)**-2.8) # t0['mid'] = t1['mid'] = SpectrumTemplate(wave=cont_wave, flux=(cont_wave/6563.)**0) # t0['red'] = t1['mid'] = SpectrumTemplate(wave=cont_wave, flux=(cont_wave/6563.)**2.8) return t0, t1
PHOENIX_LOGG_FULL = [3.0, 3.5, 4.0, 4.5, 5.0, 5.5] PHOENIX_LOGG = [4.0, 4.5, 5.0, 5.5] PHOENIX_TEFF_FULL = [400.0, 420.0, 450.0, 500.0, 550.0, 600.0, 650.0, 700.0, 750.0, 800.0, 850.0, 900.0, 950.0, 1000.0, 1050.0, 1100.0, 1150.0, 1200.0, 1250.0, 1300.0, 1350.0, 1400.0, 1450.0, 1500.0, 1550.0, 1600.0, 1650.0, 1700.0, 1750.0, 1800.0, 1850.0, 1900.0, 1950.0, 2000.0, 2100.0, 2200.0, 2300.0, 2400.0, 2500.0, 2600.0, 2700.0, 2800.0, 2900.0, 3000.0, 3100.0, 3200.0, 3300.0, 3400.0, 3500.0, 3600.0, 3700.0, 3800.0, 3900.0, 4000.0, 4100.0, 4200.0, 4300.0, 4400.0, 4500.0, 4600.0, 4700.0, 4800.0, 4900.0, 5000.0] PHOENIX_TEFF = [400.0, 420.0, 450.0, 500.0, 550.0, 600.0, 650.0, 700.0, 750.0, 800.0, 850.0, 900.0, 950.0, 1000.0, 1050.0, 1100.0, 1150.0, 1200.0, 1300.0, 1400.0, 1500.0, 1600.0, 1700.0, 1800.0, 1900.0, 2000.0, 2100.0, 2200.0, 2300.0, 2400.0, 2500.0, 2600.0, 2700.0, 2800.0, 2900.0, 3000.0, 3100.0, 3200.0, 3300.0, 3400.0, 3500.0, 3600.0, 3700.0, 3800.0, 3900.0, 4000.0, 4200.0, 4400.0, 4600.0, 4800.0, 5000.0, 5500.0, 5500, 6000.0, 6500.0, 7000.0] PHOENIX_ZMET_FULL = [-2.5, -2.0, -1.5, -1.0, -0.5, -0.0, 0.5] PHOENIX_ZMET = [-1.0, -0.5, -0.0]
[docs]def load_phoenix_stars( logg_list=PHOENIX_LOGG, teff_list=PHOENIX_TEFF, zmet_list=PHOENIX_ZMET, add_carbon_star=True, file="bt-settl_t400-7000_g4.5.fits", ): """ Load Phoenix stellar templates Parameters ---------- logg_list : list, optional List of log(g) values for the templates to load. teff_list : list, optional List of effective temperature values for the templates to load. zmet_list : list, optional List of metallicity values for the templates to load. add_carbon_star : bool, optional Whether to include a carbon star template. file : str, optional Name of the FITS file containing the templates. Default is "bt-settl_t400-7000_g4.5.fits". Returns ------- tstars : OrderedDict Dictionary of SpectrumTemplate objects, with the template names as keys. """ from collections import OrderedDict try: from urllib.request import urlretrieve except: from urllib import urlretrieve # file='bt-settl_t400-5000_g4.5.fits' # file='bt-settl_t400-3500_z0.0.fits' try: hdu = pyfits.open(os.path.join(GRIZLI_PATH, "templates/stars/", file)) except: # url = 'https://s3.amazonaws.com/grizli/CONF' # url = 'https://erda.ku.dk/vgrid/Gabriel%20Brammer/CONF' url = "https://raw.githubusercontent.com/gbrammer/" + "grizli-config/master" print("Fetch {0}/{1}".format(url, file)) # os.system('wget -O /tmp/{1} {0}/{1}'.format(url, file)) res = urlretrieve( "{0}/{1}".format(url, file), filename=os.path.join("/tmp", file) ) hdu = pyfits.open(os.path.join("/tmp/", file)) tab = GTable.gread(hdu[1]) hdu.close() tstars = OrderedDict() N = tab["flux"].shape[1] for i in range(N): teff = tab.meta["TEFF{0:03d}".format(i)] logg = tab.meta["LOGG{0:03d}".format(i)] try: met = tab.meta["ZMET{0:03d}".format(i)] except: met = 0.0 if (logg not in logg_list) | (teff not in teff_list) | (met not in zmet_list): # print('Skip {0} {1}'.format(logg, teff)) continue label = "bt-settl_t{0:05.0f}_g{1:3.1f}_m{2:.1f}".format(teff, logg, met) tstars[label] = SpectrumTemplate( wave=tab["wave"], flux=tab["flux"][:, i], name=label ) if add_carbon_star: cfile = os.path.join(GRIZLI_PATH, "templates/stars/carbon_star.txt") sp = read_catalog(cfile) if add_carbon_star > 1: import scipy.ndimage as nd cflux = nd.gaussian_filter(sp["flux"], add_carbon_star) else: cflux = sp["flux"] tstars["bt-settl_t05000_g0.0_m0.0"] = SpectrumTemplate( wave=sp["wave"], flux=cflux, name="carbon-lancon2002" ) return tstars
[docs]def load_sdss_pca_templates(file="spEigenQSO-55732.fits", smooth=3000): """ Load SDSS eigen PCA templates Parameters ---------- file : str, optional The name of the FITS file containing the templates. Default is "spEigenQSO-55732.fits". smooth : float, optional The smoothing parameter for the templates. Default is 3000. Returns ------- temp_list : OrderedDict A dictionary of SpectrumTemplate objects representing the SDSS eigen templates. """ from collections import OrderedDict import scipy.ndimage as nd im = pyfits.open(os.path.join(GRIZLI_PATH, "templates", file)) h = im[0].header log_wave = np.arange(h["NAXIS1"]) * h["COEFF1"] + h["COEFF0"] wave = 10 ** log_wave name = file.split(".fits")[0] if smooth > 0: dv_in = h["COEFF1"] * 3.0e5 n = smooth / dv_in data = nd.gaussian_filter1d(im[0].data, n, axis=1).astype(np.float64) skip = int(n / 2.5) wave = wave[::skip] data = data[:, ::skip] else: data = im[0].data.astype(np.float64) N = h["NAXIS2"] temp_list = OrderedDict() for i in range(N): temp_list["{0} {1}".format(name, i + 1)] = SpectrumTemplate( wave=wave, flux=data[i, :] ) im.close() return temp_list
[docs]def cheb_templates( wave, order=6, get_matrix=False, log=False, clip=1.0e-4, minmax=None ): """ Chebyshev polynomial basis functions Parameters ---------- wave : array-like The wavelength array. order : int The order of the Chebyshev polynomial. get_matrix : bool, optional If True, return array data rather than template objects. Default is False. log : bool, optional If True, use the logarithm of the wavelength array. Default is False. clip : float, optional The clipping threshold for wavelengths outside the range. Default is 1.0e-4. minmax : array-like, optional The minimum and maximum values of the wavelength range. If not provided, the minimum and maximum values of the input wavelength array are used. Returns ------- templates : OrderedDict The Chebyshev polynomial templates. """ from numpy.polynomial.chebyshev import chebval, chebvander if minmax is None: mi = wave.min() ma = wave.max() else: mi, ma = np.squeeze(minmax) * 1.0 if log: xi = np.log(wave) mi = np.log(mi) ma = np.log(ma) else: xi = wave * 1 x = (xi - mi) * 2 / (ma - mi) - 1 n_bases = order + 1 basis = chebvander(x, order) # for i in range(n_bases): out_of_range = (xi < mi) | (xi > ma) basis[out_of_range, :] = 0 if get_matrix: return basis temp = OrderedDict() for i in range(n_bases): key = f"cheb o{i}" temp[key] = SpectrumTemplate(wave, basis[:, i]) temp[key].name = key return temp
[docs]def bspline_templates( wave, degree=3, df=6, get_matrix=False, log=False, clip=1.0e-4, minmax=None ): """ B-spline basis functions, modeled after `~patsy.splines` Parameters ---------- wave : array-like The wavelength array. degree : int The degree of the B-spline basis functions. df : int The number of degrees of freedom. get_matrix : bool If True, return the basis function matrix. log : bool If True, use the logarithm of the wavelength array. clip : float The threshold for clipping the basis functions. minmax : tuple The minimum and maximum values for the wavelength array. Returns ------- basis : array-like The B-spline basis functions. temp : OrderedDict The B-spline templates. """ from scipy.interpolate import splev order = degree + 1 n_inner_knots = df - order inner_knots = np.linspace(0, 1, n_inner_knots + 2)[1:-1] norm_knots = np.concatenate(([0, 1] * order, inner_knots)) norm_knots.sort() if log: xspl = np.log(wave) else: xspl = wave * 1 if minmax is None: mi = xspl.min() ma = xspl.max() else: mi, ma = minmax width = ma - mi all_knots = norm_knots * width + mi n_bases = len(all_knots) - (degree + 1) basis = np.empty((xspl.shape[0], n_bases), dtype=float) coefs = np.identity(n_bases) basis = splev(xspl, (all_knots, coefs, degree)) for i in range(n_bases): out_of_range = (xspl < mi) | (xspl > ma) basis[i][out_of_range] = 0 wave_peak = np.round(wave[np.argmax(basis, axis=1)]) maxval = np.max(basis, axis=1) for i in range(n_bases): basis[i][basis[i] < clip * maxval[i]] = 0 if get_matrix: return np.vstack(basis).T temp = OrderedDict() for i in range(n_bases): key = "bspl {0} {1:.0f}".format(i, wave_peak[i]) temp[key] = SpectrumTemplate(wave, basis[i]) temp[key].name = key temp[key].wave_peak = wave_peak[i] temp.knots = all_knots temp.degree = degree temp.xspl = xspl return temp
[docs]def eval_bspline_templates(wave, bspl, coefs): """ Evaluate B-spline templates at given wavelengths. Parameters ---------- wave : array-like The wavelengths at which to evaluate the B-spline templates. bspl : scipy.interpolate.BSpline The B-spline object defining the basis functions. coefs : array-like The coefficients of the B-spline basis functions. Returns ------- array-like: The evaluated B-spline templates at the given wavelengths. """ from scipy.interpolate import splev xspl = np.log(wave) basis = splev(xspl, (bspl.knots, coefs, bspl.degree)) return np.array(basis)
[docs]def split_spline_template(templ, wavelength_range=[5000, 2.4e4], Rspline=10, log=True): """ Multiply a single template by spline bases to effectively generate a spline multiplicative correction that can be fit with linear least squares. Parameters ---------- templ : `~grizli.utils.SpectrumTemplate` Template to split. wavelength_range : [float, float] Limit the splines to this wavelength range Rspline : float Effective resolution, R=dlambda/lambda, of the spline correction function. log : bool Log-spaced splines Returns ------- stemp : dict Dictionary of spline-component templates, with additional attributes: wspline = wavelength of the templates / spline correction tspline = matrix of the spline corrections knots = peak wavelenghts of each spline component """ from collections import OrderedDict from grizli import utils if False: stars = utils.load_templates(stars=True) templ = stars["stars/L1.0.txt"] wspline = templ.wave clip = (wspline > wavelength_range[0]) & (wspline < wavelength_range[1]) df_spl = len(utils.log_zgrid(zr=wavelength_range, dz=1.0 / Rspline)) tspline = utils.bspline_templates( wspline[clip], df=df_spl + 2, log=log, clip=0.0001, get_matrix=True ) ix = np.argmax(tspline, axis=0) knots = wspline[clip][ix] N = tspline.shape[1] stemp = OrderedDict() for i in range(N): name = "{0} {1:.2f}".format(templ.name, knots[i] / 1.0e4) stemp[name] = utils.SpectrumTemplate( wave=wspline[clip], flux=templ.flux[clip] * tspline[:, i], name=name ) stemp[name].knot = knots[i] stemp.wspline = wspline[clip] stemp.tspline = tspline stemp.knots = knots return stemp
[docs]def step_templates( wlim=[5000, 1.8e4], bin_steps=None, R=30, round=10, rest=False, special=None, order=0, ): """ Step-function templates for easy binning Parameters ---------- wlim : list The wavelength range for the templates. bin_steps : ndarray The array of bin steps for the templates. R : int The resolution of the templates. round : int The rounding factor for the bin steps. rest : bool Flag indicating whether the templates are in the rest frame. special : str Special template type. Options are 'D4000', 'Dn4000', and None. order : int The order of the step function templates. Returns ------- bin_steps : ndarray The array of bin steps for the templates. step_templ : dict Dictionary of step function templates. """ if special == "Dn4000": rest = True bin_steps = np.hstack( [ np.arange(850, 3849, 100), [3850, 3950, 4000, 4100], np.arange(4200, 1.7e4, 100), ] ) elif special == "D4000": rest = True bin_steps = np.hstack( [ np.arange(850, 3749, 200), [3750, 3950, 4050, 4250], np.arange(4450, 1.7e4, 200), ] ) elif special not in ["D4000", "Dn4000", None]: print( "step_templates: {0} not recognized (options are 'D4000', 'Dn4000', and None)".format( special ) ) return {} if bin_steps is None: bin_steps = np.round(log_zgrid(wlim, 1.0 / R) / round) * round else: wlim = [bin_steps[0], bin_steps[-1]] ds = np.diff(bin_steps) xspec = np.arange(wlim[0] - ds[0], wlim[1] + ds[-1]) bin_mid = bin_steps[:-1] + ds / 2.0 step_templ = {} for i in range(len(bin_steps) - 1): yspec = ((xspec >= bin_steps[i]) & (xspec < bin_steps[i + 1])) * 1 for o in range(order + 1): label = "step {0:.0f}-{1:.0f} {2}".format(bin_steps[i], bin_steps[i + 1], o) if rest: label = "r" + label flux = ((xspec - bin_mid[i]) / ds[i]) ** o * (yspec > 0) step_templ[label] = SpectrumTemplate(wave=xspec, flux=flux, name=label) return bin_steps, step_templ
[docs]def polynomial_templates(wave, ref_wave=1.0e4, order=0, line=False): """ Generate polynomial templates based on the input parameters. If `line` is True, the method generates line templates by applying a sign to the polynomial. Otherwise, it generates polynomial templates by raising the wavelength ratio to the power of the polynomial order. Each template is stored in the returned dictionary with a key in the format "poly {i}", where i is the polynomial order. Parameters ---------- wave : array-like The wavelength array. ref_wave : float, optional The reference wavelength. Default is 1.0e4. order : int, optional The order of the polynomial. Default is 0. line : bool, optional Whether to generate line templates. Default is False. Returns ------- temp: OrderedDict A dictionary of SpectrumTemplate objects representing the polynomial templates. """ temp = OrderedDict() if line: for sign in [1, -1]: key = "poly {0}".format(sign) temp[key] = SpectrumTemplate(wave, sign * (wave / ref_wave - 1) + 1) temp[key].name = key return temp for i in range(order + 1): key = "poly {0}".format(i) temp[key] = SpectrumTemplate(wave, (wave / ref_wave - 1) ** i) temp[key].name = key temp[key].ref_wave = ref_wave return temp
[docs]def split_poly_template(templ, ref_wave=1.0e4, order=3): """ Multiply a single template by polynomial bases to effectively generate a polynomial multiplicative correction that can be fit with linear least squares. Parameters ---------- templ : `~grizli.utils.SpectrumTemplate` Template to split. ref_wave : float Wavelength where to normalize the polynomials. Order : int Polynomial order. Returns order+1 templates. Returns ------- ptemp : dict Dictionary of polynomial-component templates, with additional attributes: ref_wave = wavelength where polynomials normalized """ from collections import OrderedDict from grizli import utils tspline = polynomial_templates( templ.wave, ref_wave=ref_wave, order=order, line=False ) ptemp = OrderedDict() for i, t in enumerate(tspline): name = "{0} poly {1}".format(templ.name, i) ptemp[name] = utils.SpectrumTemplate( wave=templ.wave, flux=templ.flux * tspline[t].flux, name=name ) ptemp[name].ref_wave = ref_wave ptemp.ref_wave = ref_wave return ptemp
[docs]def dot_templates(coeffs, templates, z=0, max_R=5000, apply_igm=True): """ Compute template sum analogous to `np.dot(coeffs, templates)`. Parameters ---------- coeffs : array-like Coefficients for each template. templates : list of `~grizli.utils.SpectrumTemplate` List of templates. z : float, optional Redshift to apply to the templates (default is 0). max_R : float, optional Maximum spectral resolution to apply to the templates (default is 5000). apply_igm : bool, optional Apply intergalactic medium (IGM) attenuation to the templates. Returns ------- tc : `~grizli.utils.SpectrumTemplate` Continuum template. tl : `~grizli.utils.SpectrumTemplate` Full template (including lines). """ if len(coeffs) != len(templates): raise ValueError( "shapes of coeffs ({0}) and templates ({1}) don't match".format( len(coeffs), len(templates) ) ) wave, flux_arr, is_line = array_templates( templates, max_R=max_R, z=z, apply_igm=apply_igm ) # Continuum cont = np.dot(coeffs * (~is_line), flux_arr) tc = SpectrumTemplate(wave=wave, flux=cont).zscale(z, apply_igm=False) # Full template line = np.dot(coeffs, flux_arr) tl = SpectrumTemplate(wave=wave, flux=line).zscale(z, apply_igm=False) return tc, tl
[docs]def array_templates(templates, wave=None, max_R=5000, z=0, apply_igm=False): """ Return an array version of the templates that have all been interpolated to the same grid. Parameters ---------- templates : dictionary of `~grizli.utils.SpectrumTemplate` objects Output template list with `NTEMP` templates. max_R : float Maximum spectral resolution of the regridded templates. z : float Redshift where to evaluate the templates. But note that this is only used to shift templates produced by `bspline_templates`, which are defined in the observed frame. wave : `~numpy.ndarray`, dimensions `(NL,)`, optional Array containing unique wavelengths. If not provided, the wavelengths will be determined from the templates. flux_arr : `~numpy.ndarray`, dimensions `(NTEMP, NL)`, optional Array containing the template fluxes interpolated at `wave`. If not provided, the fluxes will be computed from the templates. is_line : `~numpy.ndarray`, optional Boolean array indicating emission line templates (the key in the template dictionary starts with "line "). Returns ------- wave : `~numpy.ndarray`, dimensions `(NL,)` Array containing unique wavelengths. flux_arr : `~numpy.ndarray`, dimensions `(NTEMP, NL)` Array containing the template fluxes interpolated at `wave`. is_line : `~numpy.ndarray` Boolean array indicating emission line templates (the key in the template dictionary starts with "line "). """ from grizli.utils_numba.interp import interp_conserve_c if wave is None: wstack = [] for t in templates: if t.split()[0] in ["bspl", "step", "poly"]: wstack.append(templates[t].wave / (1 + z)) else: wstack.append(templates[t].wave) wave = np.unique(np.hstack(wstack)) clipsum, iter = 1, 0 while (clipsum > 0) & (iter < 10): clip = np.gradient(wave) / wave < 1 / max_R idx = np.arange(len(wave))[clip] wave[idx[::2]] = np.nan wave = wave[np.isfinite(wave)] iter += 1 clipsum = clip.sum() # print(iter, clipsum) NTEMP = len(templates) flux_arr = np.zeros((NTEMP, len(wave))) for i, t in enumerate(templates): if t.split()[0] in ["bspl", "step", "poly"]: flux_arr[i, :] = interp_conserve_c( wave, templates[t].wave / (1 + z), templates[t].flux * (1 + z) ) else: if hasattr(templates[t], "flux_flam"): # Redshift-dependent eazy-py Template flux_arr[i, :] = interp_conserve_c( wave, templates[t].wave, templates[t].flux_flam(z=z) ) else: flux_arr[i, :] = interp_conserve_c( wave, templates[t].wave, templates[t].flux ) is_line = np.array([t.startswith("line ") for t in templates]) # IGM if apply_igm: try: import eazy.igm IGM = eazy.igm.Inoue14() lylim = wave < 1250 igmz = np.ones_like(wave) igmz[lylim] = IGM.full_IGM(z, wave[lylim] * (1 + z)) except: igmz = 1.0 else: igmz = 1.0 obsnames = ["bspl", "step", "poly"] is_obsframe = np.array([t.split()[0] in obsnames for t in templates]) flux_arr[~is_obsframe, :] *= igmz # Multiply spline? for i, t in enumerate(templates): if "spline" in t: for j, tj in enumerate(templates): if is_obsframe[j]: ma = flux_arr[j, :].sum() ma = ma if ma > 0 else 1 ma = 1 flux_arr[j, :] *= flux_arr[i, :] / ma return wave, flux_arr, is_line
[docs]def compute_equivalent_widths( templates, coeffs, covar, max_R=5000, Ndraw=1000, seed=0, z=0, observed_frame=False ): """ Compute template-fit emission line equivalent widths Parameters ---------- templates : dictionary of `~grizli.utils.SpectrumTemplate` objects Output template list with `NTEMP` templates. coeffs : `~numpy.ndarray`, dimensions (`NTEMP`) Fit coefficients covar : `~numpy.ndarray`, dimensions (`NTEMP`, `NTEMP`) Covariance matrix max_R : float Maximum spectral resolution of the regridded templates. Ndraw : int Number of random draws to extract from the covariance matrix seed : positive int Random number seed to produce repeatible results. If `None`, then use default state. z : float Redshift where the fit is evaluated observed_framme : bool If true, then computed EWs are observed frame, otherwise they are rest frame at redshift `z`. Returns ------- EWdict : dict Dictionary of [16, 50, 84th] percentiles of the line EW distributions. """ # Array versions of the templates wave, flux_arr, is_line = array_templates(templates, max_R=max_R, z=z) keys = np.array(list(templates.keys())) EWdict = OrderedDict() for key in keys[is_line]: EWdict[key] = (0.0, 0.0, 0.0) # Only worry about templates with non-zero coefficients, which should # be accounted for in the covariance array (with get_uncertainties=2) clip = coeffs != 0 # No valid lines if (is_line & clip).sum() == 0: return EWdict # Random draws from the covariance matrix covar_clip = covar[clip, :][:, clip] if seed is not None: np.random.seed(seed) draws = np.random.multivariate_normal(coeffs[clip], covar_clip, size=Ndraw) # Evaluate the continuum fits from the draws continuum = np.dot(draws * (~is_line[clip]), flux_arr[clip, :]) # Compute the emission line EWs tidx = np.where(is_line[clip])[0] for ix in tidx: key = keys[clip][ix] # Line template line = np.dot(draws[:, ix][:, None], flux_arr[clip, :][ix, :][None, :]) # Where line template non-zero mask = flux_arr[clip, :][ix, :] > 0 ew_i = np.trapz( (line / continuum)[:, mask], wave[mask] * (1 + z * observed_frame), axis=1 ) EWdict[key] = np.percentile(ew_i, [16.0, 50.0, 84.0]) return EWdict
##################### # Photometry from Vizier tables # CFHTLS CFHTLS_W_VIZIER = "II/317/cfhtls_w" CFHTLS_W_BANDS = OrderedDict( [ ("cfht_mega_u", ["umag", "e_umag"]), ("cfht_mega_g", ["gmag", "e_gmag"]), ("cfht_mega_r", ["rmag", "e_rmag"]), ("cfht_mega_i", ["imag", "e_imag"]), ("cfht_mega_z", ["zmag", "e_zmag"]), ] ) CFHTLS_D_VIZIER = "II/317/cfhtls_d" CFHTLS_D_BANDS = OrderedDict( [ ("cfht_mega_u", ["umag", "e_umag"]), ("cfht_mega_g", ["gmag", "e_gmag"]), ("cfht_mega_r", ["rmag", "e_rmag"]), ("cfht_mega_i", ["imag", "e_imag"]), ("cfht_mega_z", ["zmag", "e_zmag"]), ] ) # SDSS DR12 SDSS_DR12_VIZIER = "V/147/sdss12" SDSS_DR12_BANDS = OrderedDict( [ ("SDSS/u", ["umag", "e_umag"]), ("SDSS/g", ["gmag", "e_gmag"]), ("SDSS/r", ["rmag", "e_rmag"]), ("SDSS/i", ["imag", "e_imag"]), ("SDSS/z", ["zmag", "e_zmag"]), ] ) # PanStarrs PS1_VIZIER = "II/349/ps1" PS1_BANDS = OrderedDict( [ ("PS1.g", ["gKmag", "e_gKmag"]), ("PS1.r", ["rKmag", "e_rKmag"]), ("PS1.i", ["iKmag", "e_iKmag"]), ("PS1.z", ["zKmag", "e_zKmag"]), ("PS1.y", ["yKmag", "e_yKmag"]), ] ) # KIDS DR3 KIDS_DR3_VIZIER = "II/347/kids_dr3" KIDS_DR3_BANDS = OrderedDict( [ ("OCam.sdss.u", ["umag", "e_umag"]), ("OCam.sdss.g", ["gmag", "e_gmag"]), ("OCam.sdss.r", ["rmag", "e_rmag"]), ("OCam.sdss.i", ["imag", "e_imag"]), ] ) # WISE all-sky WISE_VIZIER = "II/328/allwise" WISE_BANDS = OrderedDict( [("WISE/RSR-W1", ["W1mag", "e_W1mag"]), ("WISE/RSR-W2", ["W2mag", "e_W2mag"])] ) # ('WISE/RSR-W3', ['W3mag', 'e_W3mag']), # ('WISE/RSR-W4', ['W4mag', 'e_W4mag'])]) # VIKING VISTA VIKING_VIZIER = "II/343/viking2" VIKING_BANDS = OrderedDict( [ ("SDSS/z", ["Zpmag", "e_Zpmag"]), ("VISTA/Y", ["Ypmag", "e_Ypmag"]), ("VISTA/J", ["Jpmag", "e_Jpmag"]), ("VISTA/H", ["Hpmag", "e_Hpmag"]), ("VISTA/Ks", ["Kspmag", "e_Kspmag"]), ] ) # UKIDSS wide surveys UKIDSS_LAS_VIZIER = "II/319/las9" UKIDSS_LAS_BANDS = OrderedDict( [ ("WFCAM_Y", ["Ymag", "e_Ymag"]), ("WFCAM_J", ["Jmag1", "e_Jmag1"]), ("WFCAM_J", ["Jmag2", "e_Jmag2"]), ("WFCAM_H", ["Hmag", "e_Hmag"]), ("WFCAM_K", ["Kmag", "e_Kmag"]), ] ) UKIDSS_DXS_VIZIER = "II/319/dxs9" UKIDSS_DXS_BANDS = OrderedDict( [("WFCAM_J", ["Jmag", "e_Jmag"]), ("WFCAM_K", ["Kmag", "e_Kmag"])] ) # GALEX GALEX_MIS_VIZIER = "II/312/mis" GALEX_MIS_BANDS = OrderedDict([("FUV", ["FUV", "e_FUV"]), ("NUV", ["NUV", "e_NUV"])]) GALEX_AIS_VIZIER = "II/312/ais" GALEX_AIS_BANDS = OrderedDict([("FUV", ["FUV", "e_FUV"]), ("NUV", ["NUV", "e_NUV"])]) # Combined Dict VIZIER_BANDS = OrderedDict() VIZIER_BANDS[CFHTLS_W_VIZIER] = CFHTLS_W_BANDS VIZIER_BANDS[CFHTLS_D_VIZIER] = CFHTLS_D_BANDS VIZIER_BANDS[SDSS_DR12_VIZIER] = SDSS_DR12_BANDS VIZIER_BANDS[PS1_VIZIER] = PS1_BANDS VIZIER_BANDS[KIDS_DR3_VIZIER] = KIDS_DR3_BANDS VIZIER_BANDS[WISE_VIZIER] = WISE_BANDS VIZIER_BANDS[VIKING_VIZIER] = VIKING_BANDS VIZIER_BANDS[UKIDSS_LAS_VIZIER] = UKIDSS_LAS_BANDS VIZIER_BANDS[UKIDSS_DXS_VIZIER] = UKIDSS_DXS_BANDS VIZIER_BANDS[GALEX_MIS_VIZIER] = GALEX_MIS_BANDS VIZIER_BANDS[GALEX_AIS_VIZIER] = GALEX_AIS_BANDS VIZIER_VEGA = OrderedDict() VIZIER_VEGA[CFHTLS_W_VIZIER] = False VIZIER_VEGA[CFHTLS_D_VIZIER] = False VIZIER_VEGA[SDSS_DR12_VIZIER] = False VIZIER_VEGA[PS1_VIZIER] = False VIZIER_VEGA[KIDS_DR3_VIZIER] = False VIZIER_VEGA[WISE_VIZIER] = True VIZIER_VEGA[VIKING_VIZIER] = True VIZIER_VEGA[UKIDSS_LAS_VIZIER] = True VIZIER_VEGA[UKIDSS_DXS_VIZIER] = True VIZIER_VEGA[GALEX_MIS_VIZIER] = False VIZIER_VEGA[GALEX_AIS_VIZIER] = False
[docs]def get_Vizier_photometry( ra, dec, templates=None, radius=2, vizier_catalog=PS1_VIZIER, bands=PS1_BANDS, filter_file="/usr/local/share/eazy-photoz/filters/FILTER.RES.latest", MW_EBV=0, convert_vega=False, raw_query=False, verbose=True, timeout=300, rowlimit=50000, ): """ Fetch photometry from a Vizier catalog Requires eazypy/eazy Parameters ---------- ra : float Right ascension of the target in degrees. dec : float Declination of the target in degrees. templates : dict, optional Dictionary of templates to be used for photometric redshift fitting. radius : float, optional Search radius around the target position in arcseconds. vizier_catalog : str or list, optional Name of the Vizier catalog(s) to query or a list of catalog names. bands : dict, optional Dictionary of band names and corresponding column names in the Vizier catalog. filter_file : str, optional Path to the filter file. MW_EBV : float, optional Milky Way E(B-V) reddening value. convert_vega : bool, optional Flag indicating whether to convert the photometry from Vega to AB magnitude system. raw_query : bool, optional Flag indicating whether to return the raw query result. verbose : bool, optional Flag indicating whether to print verbose output. timeout : int, optional Timeout value for the Vizier query in seconds. rowlimit : int, optional Maximum number of rows to retrieve from the Vizier catalog. Returns ------- phot : OrderedDict Dictionary containing the retrieved photometry and related information. """ from collections import OrderedDict import astropy.units as u from astroquery.vizier import Vizier Vizier.ROW_LIMIT = rowlimit Vizier.TIMEOUT = timeout # print('xxx', Vizier.ROW_LIMIT, Vizier.TIMEOUT) import astropy.coordinates as coord import astropy.units as u # import pysynphot as S from eazy.templates import Template from eazy.filters import FilterFile from eazy.photoz import TemplateGrid from eazy.filters import FilterDefinition res = FilterFile(filter_file) coo = coord.SkyCoord(ra=ra, dec=dec, unit=(u.deg, u.deg), frame="icrs") columns = ["*"] # columns = [] if isinstance(vizier_catalog, list): for c in [VIKING_VIZIER]: for b in VIZIER_BANDS[c]: columns += VIZIER_BANDS[c][b] columns = list(np.unique(columns)) # print("xxx columns", columns) else: for b in bands: columns += bands[b] if isinstance(vizier_catalog, list): v = Vizier(catalog=VIKING_VIZIER, columns=["+_r"] + columns) else: v = Vizier(catalog=vizier_catalog, columns=["+_r"] + columns) v.ROW_LIMIT = rowlimit v.TIMEOUT = timeout # query_catalog = vizier_catalog try: tabs = v.query_region( coo, radius="{0}s".format(radius), catalog=vizier_catalog ) # [0] if raw_query: return tabs tab = tabs[0] if False: for t in tabs: bands = VIZIER_BANDS[t.meta["name"]] for b in bands: for c in bands[b]: print(t.meta["name"], c, c in t.colnames) # c = bands[b][0] ix = np.argmin(tab["_r"]) tab = tab[ix] except: tab = None return None viz_tables = ", ".join([t.meta["name"] for t in tabs]) if verbose: print("Photometry from vizier catalogs: {0}".format(viz_tables)) pivot = [] # OrderedDict() flam = [] eflam = [] filters = [] for tab in tabs: # Downweight PS1 if have SDSS ? For now, do nothing if (tab.meta["name"] == PS1_VIZIER) & (SDSS_DR12_VIZIER in viz_tables): # continue err_scale = 1 else: err_scale = 1 # Only use one CFHT catalog if (tab.meta["name"] == CFHTLS_W_VIZIER) & (CFHTLS_D_VIZIER in viz_tables): continue if tab.meta["name"] == UKIDSS_LAS_VIZIER: flux_scale = 1.33 else: flux_scale = 1.0 convert_vega = VIZIER_VEGA[tab.meta["name"]] bands = VIZIER_BANDS[tab.meta["name"]] # if verbose: # print(tab.colnames) # filters += [res.filters[res.search(b, verbose=False)[0]] for b in bands] to_flam = 10 ** (-0.4 * (48.6)) * 3.0e18 # / pivot(Ang)**2 for ib, b in enumerate(bands): filt = res.filters[res.search(b, verbose=False)[0]] filters.append(filt) if convert_vega: to_ab = filt.ABVega() else: to_ab = 0.0 fcol, ecol = bands[b] pivot.append(filt.pivot()) flam.append( 10 ** (-0.4 * (tab[fcol][0] + to_ab)) * to_flam / pivot[-1] ** 2 ) flam[-1] *= flux_scale eflam.append(tab[ecol][0] * np.log(10) / 2.5 * flam[-1] * err_scale) for i in range(len(filters))[::-1]: if np.isscalar(flam[i]) & np.isscalar(eflam[i]): continue else: flam.pop(i) eflam.pop(i) filters.pop(i) pivot.pop(i) lc = np.array(pivot) # [pivot[ib] for ib in range(len(bands))] if templates is not None: eazy_templates = [ Template(arrays=(templates[k].wave, templates[k].flux), name=k) for k in templates ] zgrid = log_zgrid(zr=[0.01, 3.4], dz=0.005) tempfilt = TemplateGrid( zgrid, eazy_templates, filters=filters, add_igm=True, galactic_ebv=MW_EBV, Eb=0, n_proc=0, verbose=False, ) else: tempfilt = None phot = OrderedDict( [ ("flam", np.array(flam)), ("eflam", np.array(eflam)), ("filters", filters), ("tempfilt", tempfilt), ("lc", np.array(lc)), ("source", "Vizier " + viz_tables), ] ) return phot
[docs]def generate_tempfilt(templates, filters, zgrid=None, MW_EBV=0): """ Generate a template grid for photometric redshift fitting. Parameters ---------- templates : dict Dictionary of templates. Each template should be an instance of `eazy.templates.Template`. filters : list List of filters to be used for the photometric redshift fitting. zgrid : array-like, optional Redshift grid. If not provided, a default grid will be used. MW_EBV : float, optional Milky Way E(B-V) reddening value. Default is 0. Returns ------- tempfilt : `eazy.photoz.TemplateGrid` Template grid for photometric redshift fitting. """ from eazy.templates import Template from eazy.photoz import TemplateGrid eazy_templates = [ Template(arrays=(templates[k].wave, templates[k].flux), name=k) for k in templates ] if zgrid is None: zgrid = log_zgrid(zr=[0.01, 3.4], dz=0.005) tempfilt = TemplateGrid( zgrid, eazy_templates, filters=filters, add_igm=True, galactic_ebv=MW_EBV, Eb=0, n_proc=0, verbose=False, ) return tempfilt
[docs]def combine_phot_dict(phots, templates=None, MW_EBV=0): """ Combine photmetry dictionaries Parameters ---------- phots : list List of photometry dictionaries to combine. templates : list, optional List of templates to use for generating `tempfilt`. MW_EBV : float, optional Milky Way E(B-V) reddening value. Returns ------- dict Combined photometry dictionary. """ phot = {} phot["flam"] = [] phot["eflam"] = [] phot["filters"] = [] for p in phots: phot["flam"] = np.append(phot["flam"], p["flam"]) phot["eflam"] = np.append(phot["eflam"], p["eflam"]) phot["filters"].extend(p["filters"]) if templates is not None: phot["tempfilt"] = generate_tempfilt(templates, phot["filters"], MW_EBV=MW_EBV) return phot
[docs]def get_spectrum_AB_mags(spectrum, bandpasses=[]): """ Integrate a `~pysynphot` spectrum through filter bandpasses Parameters ---------- spectrum : type bandpasses : list List of `pysynphot` bandpass objects, e.g., >>> import pysynphot as S >>> bandpasses = [S.ObsBandpass('wfc3,ir,f140w')] Returns ------- ab_mags : dict Dictionary with keys from `bandpasses` and the integrated magnitudes """ import pysynphot as S flat = S.FlatSpectrum(0, fluxunits="ABMag") ab_mags = OrderedDict() for bp in bandpasses: flat_obs = S.Observation(flat, bp) spec_obs = S.Observation(spectrum, bp) ab_mags[bp.name] = -2.5 * np.log10(spec_obs.countrate() / flat_obs.countrate()) return ab_mags
[docs]def log_zgrid(zr=[0.7, 3.4], dz=0.01): """ Make a logarithmically spaced redshift grid Parameters ---------- zr : [float, float] Minimum and maximum of the desired grid dz : float Step size, dz/(1+z) Returns ------- zgrid : array-like Redshift grid """ zgrid = np.exp(np.arange(np.log(1 + zr[0]), np.log(1 + zr[1]), dz)) - 1 return zgrid
[docs]def trapz_dx(x): """ Return trapezoid rule coefficients, useful for numerical integration using a dot product Parameters ---------- x : array-like Independent variable Returns ------- dx : array_like Coefficients for trapezoidal rule integration. """ dx = np.zeros_like(x) diff = np.diff(x) / 2.0 dx[:-1] += diff dx[1:] += diff return dx
[docs]def get_wcs_pscale(wcs, set_attribute=True): """ Get correct pscale from a `~astropy.wcs.WCS` object Parameters ---------- wcs : `~astropy.wcs.WCS` or `~astropy.io.fits.Header` set_attribute : bool Set the `pscale` attribute on `wcs`, along with returning the value. Returns ------- pscale : float Pixel scale from `wcs.cd` """ from numpy import linalg if isinstance(wcs, pyfits.Header): wcs = pywcs.WCS(wcs, relax=True) if hasattr(wcs.wcs, "cd"): det = linalg.det(wcs.wcs.cd) else: det = linalg.det(wcs.wcs.pc) pscale = np.sqrt(np.abs(det)) * 3600.0 with warnings.catch_warnings(): warnings.filterwarnings( "ignore", "cdelt will be ignored since cd is present", RuntimeWarning ) if hasattr(wcs.wcs, "cdelt"): pscale *= wcs.wcs.cdelt[0] wcs.pscale = pscale return pscale
[docs]def transform_wcs(in_wcs, translation=[0.0, 0.0], rotation=0.0, scale=1.0): """ Update WCS with shift, rotation, & scale Parameters ---------- in_wcs: `~astropy.wcs.WCS` Input WCS translation: [float, float] xshift & yshift in pixels rotation: float CCW rotation (towards East), radians scale: float Pixel scale factor Returns ------- out_wcs: `~astropy.wcs.WCS` Modified WCS """ out_wcs = in_wcs.deepcopy() # out_wcs.wcs.crpix += np.array(translation) # Compute shift for crval, not crpix crval = in_wcs.all_pix2world( [in_wcs.wcs.crpix - np.array(translation)], 1 ).flatten() # Compute shift at image center if hasattr(in_wcs, "_naxis1"): refpix = np.array([in_wcs._naxis1 / 2.0, in_wcs._naxis2 / 2.0]) else: refpix = np.array(in_wcs._naxis) / 2.0 c0 = in_wcs.all_pix2world([refpix], 1).flatten() c1 = in_wcs.all_pix2world([refpix - np.array(translation)], 1).flatten() out_wcs.wcs.crval += c1 - c0 theta = -rotation _mat = np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]) try: out_wcs.wcs.cd[:2, :2] = np.dot(out_wcs.wcs.cd[:2, :2], _mat) / scale except: out_wcs.wcs.pc = np.dot(out_wcs.wcs.pc, _mat) / scale out_wcs.pscale = get_wcs_pscale(out_wcs) # out_wcs.wcs.crpix *= scale if hasattr(out_wcs, "pixel_shape"): _naxis1 = int(np.round(out_wcs.pixel_shape[0] * scale)) _naxis2 = int(np.round(out_wcs.pixel_shape[1] * scale)) out_wcs._naxis = [_naxis1, _naxis2] elif hasattr(out_wcs, "_naxis1"): out_wcs._naxis1 = int(np.round(out_wcs._naxis1 * scale)) out_wcs._naxis2 = int(np.round(out_wcs._naxis2 * scale)) return out_wcs
[docs]def sip_rot90(input, rot, reverse=False, verbose=False, compare=False): """ Rotate a SIP WCS by increments of 90 degrees using direct transformations between x / y coordinates Parameters ---------- input : `~astropy.io.fits.Header` or `~astropy.wcs.WCS` Header or WCS rot : int Number of times to rotate the WCS 90 degrees *clockwise*, analogous to `numpy.rot90` reverse : bool, optional If `input` is a header and includes a keyword ``ROT90``, then undo the rotation and remove the keyword from the output header verbose : bool, optional If True, print the root-mean-square difference between the original and rotated coordinates compare : bool, optional If True, plot the difference between the original and rotated coordinates as a function of x and y Returns ------- header : `~astropy.io.fits.Header` Rotated WCS header wcs : `~astropy.wcs.WCS` Rotated WCS desc : str Description of the transform associated with ``rot``, e.g, ``x=nx-x, y=ny-y`` for ``rot=±2``. """ import copy import astropy.io.fits import astropy.wcs import matplotlib.pyplot as plt if isinstance(input, astropy.io.fits.Header): orig = copy.deepcopy(input) new = copy.deepcopy(input) if "ROT90" in input: if reverse: rot = -orig["ROT90"] new.remove("ROT90") else: new["ROT90"] = orig["ROT90"] + rot else: new["ROT90"] = rot else: orig = to_header(input) new = to_header(input) orig_wcs = pywcs.WCS(orig, relax=True) ### CD = [[dra/dx, dra/dy], [dde/dx, dde/dy]] ### x = a_i_j * u**i * v**j ### y = b_i_j * u**i * v**j ix = 1 if compare: xarr = np.arange(0, 2048, 64) xp, yp = np.meshgrid(xarr, xarr) rd = orig_wcs.all_pix2world(xp, yp, ix) if rot % 4 == 1: # CW 90 deg : x = y, y = (nx - x), u=v, v=-u desc = "x=y, y=nx-x" new["CRPIX1"] = orig["CRPIX2"] new["CRPIX2"] = orig["NAXIS1"] - orig["CRPIX1"] + 1 new["CD1_1"] = orig["CD1_2"] new["CD1_2"] = -orig["CD1_1"] new["CD2_1"] = orig["CD2_2"] new["CD2_2"] = -orig["CD2_1"] for i in range(new["A_ORDER"] + 1): for j in range(new["B_ORDER"] + 1): Aij = f"A_{i}_{j}" if Aij not in new: continue new[f"A_{i}_{j}"] = orig[f"B_{j}_{i}"] * (-1) ** j new[f"B_{i}_{j}"] = orig[f"A_{j}_{i}"] * (-1) ** j * -1 new_wcs = astropy.wcs.WCS(new, relax=True) if compare: xr, yr = new_wcs.all_world2pix(*rd, ix) xo = yp yo = orig["NAXIS1"] - xp elif rot % 4 == 3: # CW 270 deg : y = x, x = (ny - u), u=-v, v=u desc = "x=ny-y, y=x" new["CRPIX1"] = orig["NAXIS2"] - orig["CRPIX2"] + 1 new["CRPIX2"] = orig["CRPIX1"] new["CD1_1"] = -orig["CD1_2"] new["CD1_2"] = orig["CD1_1"] new["CD2_1"] = -orig["CD2_2"] new["CD2_2"] = orig["CD2_1"] for i in range(new["A_ORDER"] + 1): for j in range(new["B_ORDER"] + 1): Aij = f"A_{i}_{j}" if Aij not in new: continue new[f"A_{i}_{j}"] = orig[f"B_{j}_{i}"] * (-1) ** i * -1 new[f"B_{i}_{j}"] = orig[f"A_{j}_{i}"] * (-1) ** i new_wcs = astropy.wcs.WCS(new, relax=True) if compare: xr, yr = new_wcs.all_world2pix(*rd, ix) xo = orig["NAXIS2"] - yp yo = xp elif rot % 4 == 2: # CW 180 deg : x=nx-x, y=ny-y, u=-u, v=-v desc = "x=nx-x, y=ny-y" new["CRPIX1"] = orig["NAXIS1"] - orig["CRPIX1"] + 1 new["CRPIX2"] = orig["NAXIS2"] - orig["CRPIX2"] + 1 new["CD1_1"] = -orig["CD1_1"] new["CD1_2"] = -orig["CD1_2"] new["CD2_1"] = -orig["CD2_1"] new["CD2_2"] = -orig["CD2_2"] for i in range(new["A_ORDER"] + 1): for j in range(new["B_ORDER"] + 1): Aij = f"A_{i}_{j}" if Aij not in new: continue new[f"A_{i}_{j}"] = orig[f"A_{i}_{j}"] * (-1) ** j * (-1) ** i * -1 new[f"B_{i}_{j}"] = orig[f"B_{i}_{j}"] * (-1) ** j * (-1) ** i * -1 new_wcs = astropy.wcs.WCS(new, relax=True) if compare: xr, yr = new_wcs.all_world2pix(*rd, ix) xo = orig["NAXIS1"] - xp yo = orig["NAXIS2"] - yp else: # rot=0, do nothing desc = "x=x, y=y" new_wcs = orig_wcs if compare: xo = xp yo = yp xr, yr = new_wcs.all_world2pix(*rd, ix) if verbose: if compare: xrms = nmad(xr - xo) yrms = nmad(yr - yo) print(f"Rot90: {rot} rms={xrms:.2e} {yrms:.2e}") if compare: fig, axes = plt.subplots(1, 2, figsize=(10, 5), sharex=True, sharey=True) axes[0].scatter(xp, xr - xo) axes[0].set_xlabel("dx") axes[1].scatter(yp, yr - yo) axes[1].set_xlabel("dy") for ax in axes: ax.grid() fig.tight_layout(pad=0.5) return new, new_wcs, desc
[docs]def get_wcs_slice_header(wcs, slx, sly): """ Generate a `~astropy.io.fits.Header` for a sliced WCS object. Parameters ---------- wcs : `~astropy.wcs.WCS` The original WCS object. slx : `slice` The slice along the x-axis. sly : `slice` The slice along the y-axis. Returns ------- h : `~astropy.io.fits.Header` The header for the sliced WCS object. """ h = wcs.slice((sly, slx)).to_header(relax=True) h["NAXIS"] = 2 h["NAXIS1"] = slx.stop - slx.start h["NAXIS2"] = sly.stop - sly.start for k in h: if k.startswith("PC"): h.rename_keyword(k, k.replace("PC", "CD")) return h
[docs]def get_fits_slices(file1, file2): """ Get overlapping slices of FITS files Parameters ---------- file1 : str, `~astropy.io.fits.Header`, or `~astropy.io.fits.HDUList` First file, header or HDU file2 : str, `~astropy.io.fits.Header`, or `~astropy.io.fits.HDUList` Second file, header or HDU Returns ------- nx, ny : int Size of the overlapping region valid : bool True if there is some overlap sl1 : (slice, slice) y and x slices of the overlap in ``file1`` sl2 : (slice, slice) y and x slices of the overlap in ``file2`` """ # First image if isinstance(file1, pyfits.HDUList): h1 = file1[0].header elif isinstance(file1, str): im1 = pyfits.open(file1) h1 = im1[0].header else: h1 = file1 # Second image if isinstance(file2, pyfits.HDUList): h2 = file2[0].header elif isinstance(file2, str): im2 = pyfits.open(file2) h2 = im2[0].header else: h2 = file2 # origin and shape tuples o1 = np.array([-h1["CRPIX2"], -h1["CRPIX1"]]).astype(int) sh1 = np.array([h1["NAXIS2"], h1["NAXIS1"]]) o2 = np.array([-h2["CRPIX2"], -h2["CRPIX1"]]).astype(int) sh2 = np.array([h2["NAXIS2"], h2["NAXIS1"]]) # slices sl1, sl2 = get_common_slices(o1, sh1, o2, sh2) nx = sl1[1].stop - sl1[1].start ny = sl1[0].stop - sl1[0].start valid = (nx > 0) & (ny > 0) return nx, ny, valid, sl1, sl2
[docs]def get_common_slices(a_origin, a_shape, b_origin, b_shape): """ Get slices of overlaps between two rectangular grids Parameters ---------- a_origin : tuple The origin coordinates of grid A. a_shape : tuple The shape of grid A. b_origin : tuple The origin coordinates of grid B. b_shape : tuple The shape of grid B. Returns ------- a_slice : tuple The slices of grid A that overlap with grid B. b_slice : tuple The slices of grid B that overlap with grid A. """ ll = np.min([a_origin, b_origin], axis=0) ur = np.max([a_origin + a_shape, b_origin + b_shape], axis=0) # other in self lls = np.minimum(b_origin - ll, a_shape) urs = np.clip(b_origin + b_shape - a_origin, [0, 0], a_shape) # self in other llo = np.minimum(a_origin - ll, b_shape) uro = np.clip(a_origin + a_shape - b_origin, [0, 0], b_shape) a_slice = (slice(lls[0], urs[0]), slice(lls[1], urs[1])) b_slice = (slice(llo[0], uro[0]), slice(llo[1], uro[1])) return a_slice, b_slice
[docs]class WCSFootprint(object): """ Helper functions for dealing with WCS footprints """ def __init__(self, wcs, ext=1, label=None): """ Initialize a WCSObject. Parameters ---------- wcs : `pywcs.WCS` or str or `pyfits.HDUList` The WCS object or the path to a FITS file or an HDUList object. ext : int, optional The extension number to use when reading from a FITS file. Default is 1. label : str, optional A label for the WCS object. Default is None. Attributes ---------- wcs : `pywcs.WCS` The WCS object. fp : numpy.ndarray The footprint of the WCS object. cosdec : float The cosine of the declination of the first point in the footprint. label : str or None The label for the WCS object. pixel_scale : float The pixel scale of the WCS object. Methods ------- add_naxis(header) Add the NAXIS information from the FITS header to the WCS object. """ if isinstance(wcs, pywcs.WCS): self.wcs = wcs.deepcopy() if not hasattr(self.wcs, "pixel_shape"): self.wcs.pixel_shape = None if self.wcs.pixel_shape is None: self.wcs.pixel_shape = [int(p * 2) for p in self.wcs.wcs.crpix] elif isinstance(wcs, str): hdu = pyfits.open(wcs) if len(hdu) == 1: ext = 0 self.add_naxis(hdu[ext].header) the_wcs = pywcs.WCS(hdu[ext].header, fobj=hdu) self.wcs = the_wcs hdu.close() elif isinstance(wcs, pyfits.HDUList): if len(wcs) == 1: ext = 0 self.add_naxis(wcs[ext].header) the_wcs = pywcs.WCS(wcs[ext].header, fobj=wcs) self.wcs = the_wcs else: print("WCS class not recognized: {0}".format(wcs.__class__)) raise ValueError self.fp = self.wcs.calc_footprint() self.cosdec = np.cos(self.fp[0, 1] / 180 * np.pi) self.label = label self.pixel_scale = get_wcs_pscale(self.wcs) @property def centroid(self): return np.mean(self.fp, axis=0) @property def path(self): """ `~matplotlib.path.Path` object """ import matplotlib.path return matplotlib.path.Path(self.fp) @property def polygon(self): """ `~shapely.geometry.Polygon` object. """ from shapely.geometry import Polygon return Polygon(self.fp)
[docs] def get_patch(self, **kwargs): """ `~matplotlib.pach.PathPatch` object """ return patch_from_polygon(self.polygon, **kwargs)
@property def region(self): """ Polygon string in DS9 region format """ return "polygon({0})".format( ",".join(["{0:.6f}".format(c) for c in self.fp.flatten()]) )
[docs] @staticmethod def add_naxis(header): """ If NAXIS keywords not found in an image header, assume the parent image dimensions are 2*CRPIX Parameters ---------- header : `~astropy.io.fits.Header` FITS header object. """ for i in [1, 2]: if "NAXIS{0}".format(i) not in header: header["NAXIS{0}".format(i)] = int(header["CRPIX{0}".format(i)] * 2)
[docs]def reproject_faster(input_hdu, output, pad=10, **kwargs): """ Speed up `reproject` module with array slices of the input image Parameters ---------- input_hdu : `~astropy.io.fits.ImageHDU` Input image HDU to reproject. output : `~astropy.wcs.WCS` or `~astropy.io.fits.Header` Output frame definition. pad : int Pixel padding on slices cut from the `input_hdu`. kwargs : dict Arguments passed through to `~reproject.reproject_interp`. For example, `order='nearest-neighbor'`. Returns ------- reprojected : `~numpy.ndarray` Reprojected data from `input_hdu`. footprint : `~numpy.ndarray` Footprint of the input array in the output frame. Notes ----- `reproject' is an astropy-compatible module that can be installed with `pip`. See https://reproject.readthedocs.io. """ import reproject # Output WCS if isinstance(output, pywcs.WCS): out_wcs = output else: out_wcs = pywcs.WCS(output, relax=True) if "SIP" in out_wcs.wcs.ctype[0]: print("Warning: `reproject` doesn't appear to support SIP projection") # Compute pixel coordinates of the output frame corners in the input image input_wcs = pywcs.WCS(input_hdu.header, relax=True) out_fp = out_wcs.calc_footprint() input_xy = input_wcs.all_world2pix(out_fp, 0) slx = slice(int(input_xy[:, 0].min()) - pad, int(input_xy[:, 0].max()) + pad) sly = slice(int(input_xy[:, 1].min()) - pad, int(input_xy[:, 1].max()) + pad) # Make the cutout sub_data = input_hdu.data[sly, slx] sub_header = get_wcs_slice_header(input_wcs, slx, sly) sub_hdu = pyfits.PrimaryHDU(data=sub_data, header=sub_header) # Get the reprojection seg_i, fp_i = reproject.reproject_interp(sub_hdu, output, **kwargs) return seg_i.astype(sub_data.dtype), fp_i.astype(np.uint8)
[docs]def full_spectrum_wcsheader(center_wave=1.4e4, dlam=40, NX=100, spatial_scale=1, NY=10): """ Make a WCS header for a 2D spectrum Parameters ---------- center_wave : float Wavelength of the central pixel, in Anstroms dlam : float Delta-wavelength per (x) pixel NX, NY : int Number of x & y pixels. Output will have shape `(2*NY, 2*NX)`. spatial_scale : float Spatial scale of the output, in units of the input pixels Returns ------- header : `~astropy.io.fits.Header` Output WCS header wcs : `~astropy.wcs.WCS` Output WCS Examples -------- >>> from grizli.utils import make_spectrum_wcsheader >>> h, wcs = make_spectrum_wcsheader() >>> print(wcs) WCS Keywords Number of WCS axes: 2 CTYPE : 'WAVE' 'LINEAR' CRVAL : 14000.0 0.0 CRPIX : 101.0 11.0 CD1_1 CD1_2 : 40.0 0.0 CD2_1 CD2_2 : 0.0 1.0 NAXIS : 200 20 """ h = pyfits.ImageHDU(data=np.zeros((2 * NY, 2 * NX), dtype=np.float32)) refh = h.header refh["CRPIX1"] = NX + 1 refh["CRPIX2"] = NY + 1 refh["CRVAL1"] = center_wave / 1.0e4 refh["CD1_1"] = dlam / 1.0e4 refh["CD1_2"] = 0.0 refh["CRVAL2"] = 0.0 refh["CD2_2"] = spatial_scale refh["CD2_1"] = 0.0 refh["RADESYS"] = "" refh["CTYPE1"] = "RA---TAN-SIP" refh["CUNIT1"] = "mas" refh["CTYPE2"] = "DEC--TAN-SIP" refh["CUNIT2"] = "mas" ref_wcs = pywcs.WCS(refh) ref_wcs.pscale = get_wcs_pscale(ref_wcs) return refh, ref_wcs
[docs]def make_spectrum_wcsheader(center_wave=1.4e4, dlam=40, NX=100, spatial_scale=1, NY=10): """ Make a WCS header for a 2D spectrum Parameters ---------- center_wave : float Wavelength of the central pixel, in Anstroms dlam : float Delta-wavelength per (x) pixel NX, NY : int Number of x & y pixels. Output will have shape `(2*NY, 2*NX)`. spatial_scale : float Spatial scale of the output, in units of the input pixels Returns ------- header : `~astropy.io.fits.Header` Output WCS header wcs : `~astropy.wcs.WCS` Output WCS Examples -------- >>> from grizli.utils import make_spectrum_wcsheader >>> h, wcs = make_spectrum_wcsheader() >>> print(wcs) WCS Keywords Number of WCS axes: 2 CTYPE : 'WAVE' 'LINEAR' CRVAL : 14000.0 0.0 CRPIX : 101.0 11.0 CD1_1 CD1_2 : 40.0 0.0 CD2_1 CD2_2 : 0.0 1.0 NAXIS : 200 20 """ h = pyfits.ImageHDU(data=np.zeros((2 * NY, 2 * NX), dtype=np.float32)) refh = h.header refh["CRPIX1"] = NX + 1 refh["CRPIX2"] = NY + 1 refh["CRVAL1"] = center_wave refh["CD1_1"] = dlam refh["CD1_2"] = 0.0 refh["CRVAL2"] = 0.0 refh["CD2_2"] = spatial_scale refh["CD2_1"] = 0.0 refh["RADESYS"] = "" refh["CTYPE1"] = "WAVE" refh["CTYPE2"] = "LINEAR" ref_wcs = pywcs.WCS(h.header) ref_wcs.pscale = ( np.sqrt(ref_wcs.wcs.cd[0, 0] ** 2 + ref_wcs.wcs.cd[1, 0] ** 2) * 3600.0 ) return refh, ref_wcs
[docs]def read_gzipped_header( file="test.fits.gz", BLOCK=1024, NMAX=256, nspace=16, strip=False ): """ Read primary header from a (potentially large) zipped FITS file The script proceeds by reading `NMAX` segments of size `BLOCK` bytes from the file and searching for a string `END + ' '*nspace` in the data indicating the end of the primary header. Parameters ---------- file : str Filename of gzipped FITS file BLOCK, NMAX, nspace : int Parameters for reading bytes from the input file strip : bool Send output through `strip_header_keys`. Returns ------- header : `~astropy.io.fits.Header` Header object """ import gzip import astropy.io.fits as pyfits f = gzip.GzipFile(fileobj=open(file, "rb")) data = b"" end = b" END" + b" " * nspace for i in range(NMAX): data_i = f.read(BLOCK) if end in data_i: break data += data_i if i == NMAX - 1: print( 'Error: END+{3}*" " not found in first {0}x{1} bytes of {2})'.format( NMAX, BLOCK, file, nspace ) ) f.close() return {} ix = data_i.index(end) data += data_i[:ix] + end # data_i[:ix] f.close() data_str = data.decode("utf8") h = pyfits.Header.fromstring(data_str) if strip: return strip_header_keys(h, usewcs=True) else: return h
DRIZZLE_KEYS = [ "GEOM", "DATA", "DEXP", "OUDA", "OUWE", "OUCO", "MASK", "WTSC", "KERN", "PIXF", "COEF", "OUUN", "FVAL", "WKEY", "SCAL", "ISCL", ]
[docs]def strip_header_keys( header, comment=True, history=True, drizzle_keys=DRIZZLE_KEYS, usewcs=False, keep_with_wcs=[ "EXPTIME", "FILTER", "TELESCOP", "INSTRUME", "DATE-OBS", "EXPSTART", "EXPEND", ], ): """ Strip header keywords Parameters ---------- header : `~astropy.io.fits.Header` Header object to be stripped. comment, history : bool Strip 'COMMENT' and 'HISTORY' keywords, respectively. drizzle_keys : list Strip keys produced by `~drizzlepac.astrodrizzle`. usewcs : bool Alternatively, just generate a simple WCS-only header from the input header. keep_with_wcs : list Additional keys to try to add to the `usewcs` header. Returns ------- header : `~astropy.io.fits.Header` Header object. """ import copy import astropy.wcs as pywcs # Parse WCS and build header if usewcs: wcs = pywcs.WCS(header) h = to_header(wcs) for k in keep_with_wcs: if k in header: if k in header.comments: h[k] = header[k], header.comments[k] else: h[k] = header[k] if "FILTER" in keep_with_wcs: try: h["FILTER"] = ( parse_filter_from_header(header), "element selected from filter wheel", ) except: pass return h h = copy.deepcopy(header) keys = list(h.keys()) strip_keys = [] if comment: strip_keys.append("COMMENT") if history: strip_keys.append("HISTORY") for k in keys: if k in strip_keys: h.remove(k) if drizzle_keys: if k.startswith("D"): if (k[-4:] in drizzle_keys) | k.endswith("VER"): h.remove(k) return h
[docs]def wcs_from_header(header, relax=True, **kwargs): """ Initialize `~astropy.wcs.WCS` from a `~astropy.io.fits.Header` Parameters ---------- header : `~astropy.io.fits.Header` FITS header with optional ``SIPCRPX1`` and ``SIPCRPX2`` keywords that define a separate reference pixel for a SIP header relax, kwargs : bool, dict Keywords passed to `astropy.wcs.WCS` Returns ------- wcs : `~astropy.wcs.WCS` WCS object """ wcs = pywcs.WCS(header, relax=relax) if ("SIPCRPX1" in header) & hasattr(wcs, "sip"): wcs.sip.crpix[0] = header["SIPCRPX1"] wcs.sip.crpix[1] = header["SIPCRPX2"] elif ("SIAF_XREF_SCI" in header) & hasattr(wcs, "sip"): wcs.sip.crpix[0] = header["SIAF_XREF_SCI"] wcs.sip.crpix[1] = header["SIAF_YREF_SCI"] return wcs
[docs]def to_header(wcs, add_naxis=True, relax=True, key=None): """ Modify `astropy.wcs.WCS.to_header` to produce more keywords Parameters ---------- wcs : `~astropy.wcs.WCS` Input WCS. add_naxis : bool Add NAXIS keywords from WCS dimensions relax : bool Passed to `WCS.to_header(relax=)`. key : str See `~astropy.wcs.WCS.to_header`. Returns ------- header : `~astropy.io.fits.Header` Output header. """ header = wcs.to_header(relax=relax, key=key) if add_naxis: if hasattr(wcs, "pixel_shape"): header["NAXIS"] = wcs.naxis if wcs.pixel_shape is not None: header["NAXIS1"] = wcs.pixel_shape[0] header["NAXIS2"] = wcs.pixel_shape[1] elif hasattr(wcs, "_naxis1"): header["NAXIS"] = wcs.naxis header["NAXIS1"] = wcs._naxis1 header["NAXIS2"] = wcs._naxis2 for k in header: if k.startswith("PC"): cd = k.replace("PC", "CD") header.rename_keyword(k, cd) if hasattr(wcs.wcs, "cd"): for i in [0, 1]: for j in [0, 1]: header[f"CD{i+1}_{j+1}"] = wcs.wcs.cd[i][j] if hasattr(wcs, "sip"): if hasattr(wcs.sip, "crpix"): header["SIPCRPX1"], header["SIPCRPX2"] = wcs.sip.crpix return header
[docs]def make_wcsheader( ra=40.07293, dec=-1.6137748, size=2, pixscale=0.1, get_hdu=False, theta=0 ): """ Make a celestial WCS header Parameters ---------- ra, dec : float Celestial coordinates in decimal degrees size, pixscale : float or 2-list Size of the thumbnail, in arcsec, and pixel scale, in arcsec/pixel. Output image will have dimensions `(npix,npix)`, where >>> npix = size/pixscale get_hdu : bool Return a `~astropy.io.fits.ImageHDU` rather than header/wcs. theta : float Position angle of the output thumbnail (degrees) Returns ------- hdu : `~astropy.io.fits.ImageHDU` HDU with data filled with zeros if `get_hdu=True`. header, wcs : `~astropy.io.fits.Header`, `~astropy.wcs.WCS` Header and WCS object if `get_hdu=False`. Examples -------- >>> from grizli.utils import make_wcsheader >>> h, wcs = make_wcsheader() >>> print(wcs) WCS Keywords Number of WCS axes: 2 CTYPE : 'RA---TAN' 'DEC--TAN' CRVAL : 40.072929999999999 -1.6137748000000001 CRPIX : 10.0 10.0 CD1_1 CD1_2 : -2.7777777777777e-05 0.0 CD2_1 CD2_2 : 0.0 2.7777777777777701e-05 NAXIS : 20 20 >>> from grizli.utils import make_wcsheader >>> hdu = make_wcsheader(get_hdu=True) >>> print(hdu.data.shape) (20, 20) >>> print(hdu.header.tostring) XTENSION= 'IMAGE ' / Image extension BITPIX = -32 / array data type NAXIS = 2 / number of array dimensions PCOUNT = 0 / number of parameters GCOUNT = 1 / number of groups CRPIX1 = 10 CRPIX2 = 10 CRVAL1 = 40.07293 CRVAL2 = -1.6137748 CD1_1 = -2.7777777777777E-05 CD1_2 = 0.0 CD2_1 = 0.0 CD2_2 = 2.77777777777777E-05 NAXIS1 = 20 NAXIS2 = 20 CTYPE1 = 'RA---TAN' CTYPE2 = 'DEC--TAN' """ if np.isscalar(pixscale): cdelt = [pixscale / 3600.0] * 2 else: cdelt = [pixscale[0] / 3600.0, pixscale[1] / 3600.0] if np.isscalar(size): npix = np.asarray(np.round([size/pixscale, size/pixscale]),dtype=int) else: npix = np.asarray(np.round([size[0]/pixscale, size[1]/pixscale]),dtype=int) hout = pyfits.Header() hout["CRPIX1"] = (npix[0] - 1) / 2 + 1 hout["CRPIX2"] = (npix[1] - 1) / 2 + 1 hout["CRVAL1"] = ra hout["CRVAL2"] = dec hout["CD1_1"] = -cdelt[0] hout["CD1_2"] = hout["CD2_1"] = 0.0 hout["CD2_2"] = cdelt[1] hout["NAXIS1"] = npix[0] hout["NAXIS2"] = npix[1] hout["CTYPE1"] = "RA---TAN" hout["CTYPE2"] = "DEC--TAN" hout["RADESYS"] = "ICRS" hout["EQUINOX"] = 2000 hout["LATPOLE"] = hout["CRVAL2"] hout["LONPOLE"] = 180 hout["PIXASEC"] = pixscale, "Pixel scale in arcsec" wcs_out = pywcs.WCS(hout) theta_rad = np.deg2rad(theta) mat = np.array( [ [np.cos(theta_rad), -np.sin(theta_rad)], [np.sin(theta_rad), np.cos(theta_rad)], ] ) rot_cd = np.dot(mat, wcs_out.wcs.cd) for i in [0, 1]: for j in [0, 1]: hout["CD{0:d}_{1:d}".format(i + 1, j + 1)] = rot_cd[i, j] wcs_out.wcs.cd[i, j] = rot_cd[i, j] cd = wcs_out.wcs.cd wcs_out.pscale = get_wcs_pscale(wcs_out) # np.sqrt((cd[0,:]**2).sum())*3600. if get_hdu: hdu = pyfits.ImageHDU( header=hout, data=np.zeros((npix[1], npix[0]), dtype=np.float32) ) return hdu else: return hout, wcs_out
[docs]def get_flt_footprint(flt_file, extensions=[1, 2, 3, 4], patch_args=None): """ Compute footprint of all SCI extensions of an HST exposure Parameters ---------- flt_file : str Path to the FITS file. extensions : list List of extensions to retrieve (can have extras). patch_args : dict or None If a `dict`, then generate a patch for the footprint passing `**patch_args` arguments (e.g., `{'fc':'blue', 'alpha':0.1}`). Returns ------- fp / patch : `~shapely.geometry` object or `matplotlib.patch.Patch` The footprint or footprint patch. """ from shapely.geometry import Polygon im = pyfits.open(flt_file) fp = None for ext in extensions: if ("SCI", ext) not in im: continue wcs = pywcs.WCS(im["SCI", ext].header, fobj=im) p_i = Polygon(wcs.calc_footprint()) if fp is None: fp = p_i else: fp = fp.union(p_i) im.close() if patch_args is not None: patch = patch_from_polygon(fp, **patch_args) return patch else: return fp
[docs]def make_maximal_wcs( files, pixel_scale=None, get_hdu=True, pad=90, verbose=True, theta=0, poly_buffer=1.0 / 3600, nsci_extensions=4, ): """ Compute an ImageHDU with a footprint that covers all of ``files`` Parameters ---------- files : list List of HST FITS files (e.g., FLT.) or WCS objects. pixel_scale : float, optional Pixel scale of output WCS, in `~astropy.units.arcsec`. If `None`, get pixel scale of first file in `files`. get_hdu : bool, optional If True, return an `~astropy.io.fits.ImageHDU` object. If False, return a tuple of `~astropy.io.fits.Header` and `~astropy.wcs.WCS`. pad : float, optional Padding to add to the total image size, in `~astropy.units.arcsec`. theta : float, optional Position angle, in degrees. poly_buffer : float, optional Buffer size to apply to the footprint polygon, in degrees. nsci_extensions : int, optional Number of 'SCI' extensions to try in the exposure files. Returns ------- hdu : `~astropy.io.fits.ImageHDU` If `get_hdu` is True. -or- header, wcs : `~astropy.io.fits.Header`, `~astropy.wcs.WCS` If `get_hdu` is False. """ import numpy as np from shapely.geometry import Polygon import astropy.io.fits as pyfits import astropy.wcs as pywcs group_poly = None if hasattr(files, "buffer"): # Input is a shapely object group_poly = files elif isinstance(files[0], pywcs.WCS): # Already wcs_list wcs_list = [(wcs, "WCS", -1) for wcs in files] else: wcs_list = [] for i, file in enumerate(files): if not os.path.exists(file): continue with pyfits.open(file) as im: for ext in range(nsci_extensions): if ("SCI", ext + 1) not in im: continue wcs = pywcs.WCS(im["SCI", ext + 1].header, fobj=im) wcs_list.append((wcs, file, ext)) if pixel_scale is None: pixel_scale = get_wcs_pscale(wcs_list[0][0]) if group_poly is None: for i, (wcs, file, chip) in enumerate(wcs_list): p_i = Polygon(wcs.calc_footprint()) if group_poly is None: if poly_buffer > 0: group_poly = p_i.buffer(1.0 / 3600) else: group_poly = p_i else: if poly_buffer > 0: group_poly = group_poly.union(p_i.buffer(1.0 / 3600)) else: group_poly = group_poly.union(p_i) x0, y0 = np.asarray(group_poly.centroid.xy,dtype=float)[:, 0] if verbose: msg = "{0:>3d}/{1:>3d}: {2}[SCI,{3}] {4:>6.2f}" print( msg.format( i, len(files), file, chip + 1, group_poly.area * 3600 * np.cos(y0 / 180 * np.pi), ) ) px = np.asarray(group_poly.convex_hull.boundary.xy,dtype=float).T #x0, y0 = np.asarray(group_poly.centroid.xy,dtype=float)[:,0] x0 = (px.max(axis=0) + px.min(axis=0)) / 2.0 cosd = np.array([np.cos(x0[1] / 180 * np.pi), 1]) _mat = np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]) # Rotated pr = ((px - x0) * cosd).dot(_mat) / cosd + x0 size_arcsec = (pr.max(axis=0) - pr.min(axis=0)) * cosd * 3600 sx, sy = size_arcsec # sx = (px.max()-px.min())*cosd*3600 # arcsec # sy = (py.max()-py.min())*3600 # arcsec size = np.maximum(sx + pad, sy + pad) if verbose: msg = "\n Mosaic WCS: ({0:.5f},{1:.5f}) " msg += "{2:.1f}'x{3:.1f}' {4:.3f}\"/pix\n" print( msg.format(x0[0], x0[1], (sx + pad) / 60.0, (sy + pad) / 60.0, pixel_scale) ) out = make_wcsheader( ra=x0[0], dec=x0[1], size=(sx + pad * 2, sy + pad * 2), pixscale=pixel_scale, get_hdu=get_hdu, theta=theta / np.pi * 180, ) return out
[docs]def half_pixel_scale(wcs): """ Create a new WCS with half the pixel scale of another that can be block-averaged 2x2 Parameters ---------- wcs : `~astropy.wcs.WCS` Input WCS Returns ------- half_wcs : `~astropy.wcs.WCS` New WCS with smaller pixels """ h = to_header(wcs) for k in ["NAXIS1", "NAXIS2"]: # , 'CRPIX1', 'CRPIX2']: h[k] *= 2 for k in ["CRPIX1", "CRPIX2"]: h[k] = h[k] * 2 - 0.5 for k in ["CD1_1", "CD1_2", "CD2_1", "CD2_2"]: if k in h: h[k] /= 2 if 0: # Test new = pywcs.WCS(h) sh = new.pixel_shape wcorner = wcs.all_world2pix( new.all_pix2world([[-0.5, -0.5], [sh[0] - 0.5, sh[1] - 0.5]], 0), 0 ) print("small > large") print(", ".join([f"{w:.2f}" for w in wcorner[0]])) print(", ".join([f"{w:.2f}" for w in wcorner[1]]), wcs.pixel_shape) sh = wcs.pixel_shape wcorner = new.all_world2pix( wcs.all_pix2world([[-0.5, -0.5], [sh[0] - 0.5, sh[1] - 0.5]], 0), 0 ) print("large > small") print(", ".join([f"{w:.2f}" for w in wcorner[0]])) print(", ".join([f"{w:.2f}" for w in wcorner[1]]), new.pixel_shape) new_wcs = pywcs.WCS(h, relax=True) return new_wcs
[docs]def header_keys_from_filelist(fits_files, keywords=[], ext=0, colname_case=str.lower): """ Dump header keywords to a `~astropy.table.Table` Parameters ---------- fits_files : list List of FITS filenames keywords : list or None List of header keywords to retrieve. If `None`, then generate a list of *all* keywords from the first file in the list. ext : int, tuple FITS extension from which to pull the header. Can be integer or tuple, e.g., ('SCI',1) for HST ACS/WFC3 FLT files. colname_case : func Function to set the case of the output colnames, e.g., `str.lower`, `str.upper`, `str.title`. Returns ------- tab : `~astropy.table.Table` Output table. """ import numpy as np import astropy.io.fits as pyfits from astropy.table import Table # If keywords=None, get full list from first FITS file if keywords is None: h = pyfits.getheader(fits_files[0], ext) keywords = list(np.unique(list(h.keys()))) keywords.pop(keywords.index("")) keywords.pop(keywords.index("HISTORY")) # Loop through files lines = [] for file in fits_files: line = [file] h = pyfits.getheader(file, ext) for key in keywords: if key in h: line.append(h[key]) else: line.append(None) lines.append(line) # Column names table_header = [colname_case(key) for key in ["file"] + keywords] # Output table tab = Table(data=np.array(lines), names=table_header) return tab
[docs]def parse_s3_url(url="s3://bucket/path/to/file.txt"): """ Parse s3 path string Parameters ---------- url : str Full S3 path, e.g., ``[s3://]{bucket_name}/{s3_object}`` Returns ------- bucket_name : str Bucket name s3_object : str Full path of the S3 file object filename : str File name of the object, e.g. ``os.path.basename(s3_object)`` """ surl = url.strip("s3://") spl = surl.split("/") if len(spl) < 2: print(f"bucket / path not found in {url}") return None, None, None bucket_name = spl[0] s3_object = "/".join(spl[1:]) filename = os.path.basename(s3_object) return bucket_name, s3_object, filename
[docs]def fetch_s3_url( url="s3://bucket/path/to/file.txt", file_func=lambda x: os.path.join("./", x), skip_existing=True, verbose=True, ): """ Fetch file from an S3 bucket Parameters ---------- url : str S3 url of a file to download file_func : function Function applied to the file name extracted from `url`, e.g., to set output directory, rename files, set a prefix, etc. skip_existing : bool, optional If True, skip downloading if the local file already exists. Default is True. verbose : bool, optional If True, print download progress and status messages. Default is True. Returns ------- local_file : str Name of local file or `None` if failed to parse `url` status : int Bit flag of results: **1** == file found, **2** = download successful """ import traceback import boto3 import botocore.exceptions s3 = boto3.resource("s3") bucket_name, s3_object, filename = parse_s3_url(url=url) if bucket_name is None: return url, os.path.exists(url) bkt = s3.Bucket(bucket_name) local_file = file_func(filename) status = os.path.exists(local_file) * 1 if (status > 0) & skip_existing: print(f"{local_file} exists, skipping.") else: try: bkt.download_file( s3_object, local_file, ExtraArgs={"RequestPayer": "requester"} ) status += 2 if verbose: print(f"{url} > {local_file}") except botocore.exceptions.ClientError: trace = traceback.format_exc(limit=2) msg = trace.split("\n")[-2].split("ClientError: ")[1] if verbose: print(f"Failed {url}: {msg}") # Download failed due to a ClientError # Forbidden probably means insufficient bucket access privileges pass return local_file, status
[docs]def niriss_ghost_mask( im, init_thresh=0.05, init_sigma=3, final_thresh=0.01, final_sigma=3, erosions=0, dilations=9, verbose=True, **kwargs, ): """ Make a mask for NIRISS imaging ghosts See also Martel. JWST-STScI-004877 and https://github.com/spacetelescope/niriss_ghost Parameters ---------- im : `~astropy.io.fits.HDUList` Input image HDUList. init_thresh : float, optional Initial threshold for detecting ghost pixels. Default is 0.05. init_sigma : float, optional Initial sigma threshold for detecting ghost pixels. Default is 3. final_thresh : float, optional Final threshold for detecting ghost pixels. Default is 0.01. final_sigma : float, optional Final sigma threshold for detecting ghost pixels. Default is 3. erosions : int, optional Number of binary erosions to apply to the ghost mask. Default is 0. dilations : int, optional Number of binary dilations to apply to the ghost mask. Default is 9. verbose : bool, optional If True, print diagnostic messages. Default is True. Returns ------- ghost_mask : `~numpy.ndarray` Boolean array indicating the positions of the ghost pixels. """ import scipy.ndimage as nd if im[0].header["PUPIL"] not in ["F115W", "F150W", "F200W"]: return False if im[0].header["PUPIL"] == "F115W": xgap, ygap = 1156, 927 elif im[0].header["PUPIL"] == "F115W": xgap, ygap = 1162, 938 else: xgap, ygap = 1156, 944 - 2 yp, xp = np.indices((2048, 2048)) yg = 2 * (ygap - 1) - yp xg = 2 * (xgap - 1) - xp dx = xp - xgap dy = yp - ygap in_img = (xg >= 0) & (xg < 2048) in_img &= (yg >= 0) & (yg < 2048) in_img &= np.abs(dx) < 400 in_img &= np.abs(dy) < 400 if "MDRIZSKY" in im["SCI"].header: bkg = im["SCI"].header["MDRIZSKY"] else: bkg = np.nanmedian(im["SCI"].data[im["DQ"].data == 0]) thresh = (im["SCI"].data - bkg) * init_thresh > init_sigma * im["ERR"].data thresh &= in_img _reflected = np.zeros_like(im["SCI"].data) for xpi, ypi, xgi, ygi in zip(xp[thresh], yp[thresh], xg[thresh], yg[thresh]): _reflected[ygi, xgi] = im["SCI"].data[ypi, xpi] - bkg ghost_mask = _reflected * final_thresh > final_sigma * im["ERR"].data if erosions > 0: ghost_mask = nd.binary_erosion(ghost_mask, iterations=erosions) ghost_mask = nd.binary_dilation(ghost_mask, iterations=dilations) im[0].header["GHOSTMSK"] = True, "NIRISS ghost mask applied" im[0].header["GHOSTNPX"] = ghost_mask.sum(), "Pixels in NIRISS ghost mask" msg = "NIRISS ghost mask {0} Npix: {1}\n".format( im[0].header["PUPIL"], ghost_mask.sum() ) log_comment(LOGFILE, msg, verbose=verbose) return ghost_mask
[docs]def get_photom_scale(header, verbose=True): """ Get tabulated scale factor Parameters ---------- header : `~astropy.io.fits.Header` Image header verbose : bool, optional Whether to display verbose output. Default is True. Returns ------- key : str Detector + filter key scale : float Scale value. If `key` not found in the ``data/photom_correction.yml`` table or if the CTX is newer than that indicated in the correction table then return 1.0. """ import yaml if "TELESCOP" in header: if header["TELESCOP"] not in ["JWST"]: msg = f"get_photom_scale: TELESCOP={header['TELESCOP']} is not 'JWST'" log_comment(LOGFILE, msg, verbose=verbose) return header["TELESCOP"], 1.0 else: return None, 1.0 corr_file = os.path.join(os.path.dirname(__file__), "data/photom_correction.yml") if not os.path.exists(corr_file): msg = f"{corr_file} not found." log_comment(LOGFILE, msg, verbose=verbose) return None, 1 with open(corr_file) as fp: corr = yaml.load(fp, Loader=yaml.SafeLoader) if "CRDS_CTX" in header: if header["CRDS_CTX"] > corr["CRDS_CTX_MAX"]: msg = f"get_photom_scale {corr_file}: {header['CRDS_CTX']} > {corr['CRDS_CTX_MAX']}" log_comment(LOGFILE, msg, verbose=verbose) return header["CRDS_CTX"], 1.0 key = "{0}-{1}".format(header["DETECTOR"], header["FILTER"]) if "PUPIL" in header: key += "-{0}".format(header["PUPIL"]) if key not in corr: msg = f"get_photom_scale {corr_file}: {key} not found" log_comment(LOGFILE, msg, verbose=verbose) return key, 1.0 else: msg = f"get_photom_scale {corr_file}: Scale {key} by {1./corr[key]:.3f}" log_comment(LOGFILE, msg, verbose=verbose) return key, 1.0 / corr[key]
[docs]def jwst_crds_photom_scale(hdul, context="jwst_1130.pmap", update=True, verbose=False): """ Scale factors between different JWST CRDS_CONTEXT Parameters ---------- hdul : `astropy.io.fits.HDUList` Exposure file HDUList, which has header keywords like CRDS_CTX, PHOTMJSR, etc. context : str Target CRDS context version update : bool Scale photometry header keywords by the ratio of NEW_PHOTMJSR / OLD_PHOTMJSR verbose: bool Messaging Returns ------- scale : float Relative photometry scaling factor NEW_PHOTMJSR / OLD_PHOTMJSR. Defaults to 1.0 if not a JWST instrument or if certain necessary header keywords not found """ try: from .jwst_utils import get_crds_zeropoint, get_jwst_filter_info except ImportError: print( "jwst_crds_photom_scale: failed to import grizli.jwst_utils.get_crds_zeropoint" ) return 1.0 if "INSTRUME" not in hdul[0].header: return 1.0 instrument = hdul[0].header["INSTRUME"] if instrument not in ["NIRCAM", "MIRI", "NIRISS"]: return 1.0 mode = {"context": context, "verbose": False, "instrument": instrument} for k in ["FILTER", "PUPIL", "DETECTOR"]: if k in hdul[0].header: mode[k.lower()] = hdul[0].header[k] ref_ctx, r_photom, ref_photmjsr, ref_pixar_sr = get_crds_zeropoint(**mode) if ref_photmjsr is None: return 1.0 if "PHOTMJSR" not in hdul["SCI"].header: return 1.0 old_photmjsr = hdul["SCI"].header["PHOTMJSR"] scale = ref_photmjsr / old_photmjsr msg = f"jwst_crds_photom_scale: {context} photmjsr old, new = " msg += f"{old_photmjsr:.3f} {ref_photmjsr:.3f} scale = {scale:.3f}" if update: # Check image units if "OBUNIT" in hdul["SCI"].header: unit_key = "OBUNIT" else: unit_key = "BUNIT" if hdul["SCI"].header[unit_key].upper() == "MJy/sr".upper(): # Image was already scaled (cal), so use scale factor to_mjysr = scale else: # Image wasn't scaled, so just use mjsr to_mjysr = ref_photmjsr # Recalculate PHOTFNU, PHOTFLAM from PIXAR_SR, which could also change if ref_pixar_sr is None: ref_pixar_sr = hdul["SCI"].header["PIXAR_SR"] photfnu = to_mjysr * ref_pixar_sr * 1.0e6 filter_info = get_jwst_filter_info(hdul[0].header) if filter_info is not None: plam = filter_info["pivot"] * 1.0e4 else: plam = 5.0e4 photflam = photfnu * 2.99e-5 / plam ** 2 for e in [0, "SCI"]: hdul[e].header["PIXAR_SR"] = ref_pixar_sr hdul[e].header["PHOTFLAM"] = photflam hdul[e].header["PHOTFNU"] = photfnu for k in ["TO_MJYSR", "PHOTMJSR"]: if k in hdul[e].header: hdul[e].header[k] *= scale if "ZP" in hdul[e].header: hdul[e].header["ZP"] -= 2.5 * np.log10(scale) hdul[e].header["CRDS_CTX"] = context hdul[e].header["R_PHOTOM"] = os.path.basename(r_photom) log_comment(LOGFILE, msg, verbose=verbose) return scale
DEFAULT_SNOWBLIND_KWARGS = dict( require_prefix="jw", max_fraction=0.3, new_jump_flag=1024, min_radius=4, growth_factor=1.5, unset_first=True, )
[docs]def jwst_snowblind_mask( rate_file, require_prefix="jw", max_fraction=0.3, new_jump_flag=1024, min_radius=4, growth_factor=1.5, unset_first=True, verbose=True, skip_after_cal_version='1.14', **kwargs, ): """ Update JWST DQ mask with `snowblind`. See https://github.com/mpi-astronomy/snowblind. Requires ``snowblind > 0.1.2``, which currently is just in the fork at https://github.com/gbrammer/snowblind. Parameters ---------- rate_file : str Filename of a ``rate.fits`` exposure require_prefix : str Only run if ``rate_file.startswith(require_prefix)`` max_fraction : float Maximum allowed fraction of flagged pixels relative to the total new_jump_flag : int Integer DQ flag of identified snowballs min_radius : int Minimum radius of ``JUMP_DET`` flagged groups of pixels growth_factor : float Scale factor of the DQ mask unset_first : bool Unset the `new_jump_flag` bit of the DQ array before processing verbose : bool Whether to print verbose output kwargs : dict Additional keyword arguments to be passed to `snowblind.SnowblindStep.call()` Returns ------- dq : array-like Image array with values ``new_jump_flag`` with identified snowballs mask_frac : float Fraction of masked pixels """ import jwst.datamodels from packaging.version import Version from . import jwst_utils if not os.path.basename(rate_file).startswith(require_prefix): return None, None try: from snowblind import snowblind from snowblind import __version__ as snowblind_version except ImportError: return None, None if snowblind_version <= "0.1.2": msg = ( "ImportError: snowblind > 0.1.2 required, get it from the fork at " "https://github.com/gbrammer/snowblind if not yet available on the " "main repository at https://github.com/mpi-astronomy/snowblind" ) log_comment(LOGFILE, msg, verbose=True) return None, None step = snowblind.SnowblindStep # Do we need to reset header keywords? reset_header = False with pyfits.open(rate_file) as im: reset_header = "OINSTRUM" in im[0].header reset_header &= im[0].header["INSTRUME"] == "WFC3" if "CAL_VER" in im[0].header: im_cal_ver = im[0].header["CAL_VER"] if Version(im_cal_ver) >= Version(skip_after_cal_version): msg = f"mask_snowballs: {rate_file} " msg += f"{im_cal_ver} > {skip_after_cal_version}, skip" log_comment(LOGFILE, msg, verbose=True) return np.zeros(im["SCI"].data.shape, dtype=int), 0.0 if reset_header: _ = jwst_utils.set_jwst_to_hst_keywords(rate_file, reset=True, verbose=False) with jwst.datamodels.open(rate_file) as dm: if unset_first: dm.dq -= dm.dq & new_jump_flag res = step.call( dm, save_results=False, new_jump_flag=new_jump_flag, min_radius=min_radius, growth_factor=growth_factor, **kwargs, ) if reset_header: _ = jwst_utils.set_jwst_to_hst_keywords(rate_file, reset=False, verbose=False) _mask_frac = ((res.dq & new_jump_flag) > 0).sum() / res.dq.size if _mask_frac > max_fraction: msg = f"grizli.utils.jwst_snowblind_mask: {rate_file} problem " msg += f" fraction {_mask_frac*100:.2f} > {max_fraction*100:.2f}" msg += " turning off..." res.dq &= 0 else: msg = f"grizli.utils.jwst_snowblind_mask: {rate_file} {_mask_frac*100:.2f}" msg += f" masked with DQ={new_jump_flag}" log_comment(LOGFILE, msg, verbose=verbose) return (res.dq & new_jump_flag), _mask_frac
[docs]def drizzle_from_visit( visit, output=None, pixfrac=1.0, kernel="point", clean=True, include_saturated=True, keep_bits=None, dryrun=False, skip=None, extra_wfc3ir_badpix=True, verbose=True, scale_photom=True, context="jwst_1130.pmap", weight_type="jwst_var", rnoise_percentile=99, calc_wcsmap=False, niriss_ghost_kwargs={}, snowblind_kwargs=None, jwst_dq_flags=JWST_DQ_FLAGS, nircam_hot_pixel_kwargs={}, niriss_hot_pixel_kwargs=None, # {'hot_threshold': 7, 'plus_sn_min': 3}, get_dbmask=True, saturated_lookback=1e4, write_sat_file=False, sat_kwargs={}, query_persistence_pixels=True, **kwargs, ): """ Make drizzle mosaic from exposures in a visit dictionary Parameters ---------- visit : dict Visit dictionary with 'product' and 'files' keys output : `~astropy.wcs.WCS`, `~astropy.io.fits.Header`, `~astropy.io.ImageHDU` Output frame definition. Can be a WCS object, header, or FITS HDU. If None, then generates a WCS with `grizli.utils.make_maximal_wcs` pixfrac : float Drizzle `pixfrac` kernel : str Drizzle `kernel` (e.g., 'point', 'square') clean : bool Remove exposure files after adding to the mosaic include_saturated : bool Include pixels with saturated DQ flag keep_bits : int, None Extra DQ bits to keep as valid dryrun : bool If True, don't actually produce the output skip : int Slice skip to drizzle a subset of exposures extra_wfc3ir_badpix : bool Apply extra WFC3/IR bad pix to DQ verbose : bool Some verbose message printing scale_photom : bool For JWST, apply photometry scale corrections from the `grizli/data/photom_correction.yml` table context : str JWST calibration context to use for photometric scaling weight_type : 'err', 'median_err', 'time', 'jwst', 'jwst_var', 'median_variance' Exposure weighting strategy. - The default 'err' strategy uses the full uncertainty array defined in the `ERR` image extensions. The alternative - The 'median_err' strategy uses the median of the `ERR` extension - The 'time' strategy weights 'median_err' by the `TIME` extension, if available - For the 'jwst' strategy, if 'VAR_POISSON' and 'VAR_RNOISE' extensions found, weight by VAR_RNOISE + median(VAR_POISSON). Fall back to 'median_err' otherwise. - For 'jwst_var', use the *weight* as in ``weight_type='jwst'`` but also make a full variance map propagated from the ``ERR`` noise model. rnoise_percentile : float Percentile defining the upper limit of valid `VAR_RNOISE` values, if that extension is found in the exposure files(e.g., for JWST) calc_wcsmap : bool Calculate and return the WCS map get_dbmask : bool Get the bad pixel mask from the database niriss_ghost_kwargs : dict Keyword arguments for `~grizli.utils.niriss_ghost_mask` snowblind_kwargs : dict Arguments to pass to `~grizli.utils.jwst_snowblind_mask` if `snowblind` hasn't already been run on JWST exposures jwst_dq_flags : list List of JWST flag names to include in the bad pixel mask. To ignore, set to ``None`` nircam_hot_pixel_kwargs : dict Keyword arguments for `grizli.jwst_utils.flag_nircam_hot_pixels`. Set to ``None`` to disable and use the static bad pixel tables. niriss_hot_pixel_kwargs : dict Keyword arguments for `grizli.jwst_utils.flag_nircam_hot_pixels` when running on NIRISS exposures. Set to ``None`` to disable and use the static bad pixel tables. saturated_lookback : float Time, in seconds, to look for saturated pixels in previous exposures that can cause persistence. Skip if ``saturated_lookback <= 0``. write_sat_file : bool Write persistence saturation tables sat_kwargs : dict keyword arguments to `~grizli.jwst_utils.get_saturated_pixels` query_persistence_pixels : bool Also try to query the full saturated pixel history from the DB with ``saturated_lookback`` Returns ------- outsci : array-like SCI array outwht : array-like Inverse variance WHT array outvar : array-like Optional variance array, if the input weights are not explicitly inverse variance header : `~astropy.io.fits.Header` Image header flist : list List of files that were drizzled to the mosaic wcs_tab : `~astropy.table.Table` Table of WCS parameters of individual exposures """ from shapely.geometry import Polygon import scipy.ndimage as nd from astropy.io.fits import PrimaryHDU, ImageHDU from .prep import apply_region_mask_from_db from .version import __version__ as grizli__version from .jwst_utils import get_jwst_dq_bit, flag_nircam_hot_pixels from .jwst_utils import get_saturated_pixel_table, query_persistence bucket_name = None try: import boto3 from botocore.exceptions import ClientError s3 = boto3.resource("s3") s3_client = boto3.client("s3") except ImportError: s3 = None ClientError = None s3_client = None _valid_weight_type = [ "err", "median_err", "time", "jwst", "jwst_var", "median_variance", ] if weight_type not in _valid_weight_type: print(f"WARNING: weight_type '{weight_type}' must be 'err', 'median_err', ") print(f" 'jwst', 'median_variance', or 'time'; falling back to 'err'.") weight_type = "err" if isinstance(output, pywcs.WCS): outputwcs = output elif isinstance(output, pyfits.Header): outputwcs = pywcs.WCS(output) elif isinstance(output, PrimaryHDU) | isinstance(output, ImageHDU): outputwcs = pywcs.WCS(output.header) elif output is None: _hdu = make_maximal_wcs( files=visit["files"], pixel_scale=None, get_hdu=True, verbose=False, pad=4 ) outputwcs = pywcs.WCS(_hdu.header) else: return None if not hasattr(outputwcs, "_naxis1"): outputwcs._naxis1, outputwcs._naxis2 = outputwcs._naxis outputwcs.pscale = get_wcs_pscale(outputwcs) output_poly = Polygon(outputwcs.calc_footprint()) count = 0 ref_photflam = None indices = [] for i in range(len(visit["files"])): if "footprints" in visit: if hasattr(visit["footprints"][i], "intersection"): olap = visit["footprints"][i].intersection(output_poly) if olap.area > 0: indices.append(i) elif hasattr(visit["footprints"][i], "__len__"): for _fp in visit["footprints"][i]: olap = _fp.intersection(output_poly) if olap.area > 0: indices.append(i) break else: indices.append(i) else: indices.append(i) if skip is not None: indices = indices[::skip] NTOTAL = len(indices) wcs_rows = [] wcs_colnames = None wcs_keys = {} bpdata = 0 saturated_tables = {} for i in indices: file = visit["files"][i] msg = "\n({0:4d}/{1:4d}) Add exposure {2} " msg += "(weight_type='{3}', rnoise_percentile={4})\n" msg = msg.format(count + 1, NTOTAL, file, weight_type, rnoise_percentile) log_comment(LOGFILE, msg, verbose=verbose) if dryrun: continue if (not os.path.exists(file)) & (s3 is not None): bucket_i = visit["awspath"][i].split("/")[0] if bucket_name != bucket_i: bucket_name = bucket_i bkt = s3.Bucket(bucket_name) s3_path = "/".join(visit["awspath"][i].split("/")[1:]) remote_file = os.path.join(s3_path, file) print(" (fetch from s3://{0}/{1})".format(bucket_i, remote_file)) try: bkt.download_file( remote_file, file, ExtraArgs={"RequestPayer": "requester"} ) except ClientError: print(" (failed s3://{0}/{1})".format(bucket_i, remote_file)) continue try: flt = pyfits.open(file) except OSError: print(f"open({file}) failed!") continue sci_list, wht_list, wcs_list = [], [], [] if weight_type == "jwst_var": var_list = [] else: var_list = None keys = OrderedDict() for k in ['EXPTIME', 'TELESCOP', 'FILTER','FILTER1', 'FILTER2', 'PUPIL', 'DETECTOR', 'INSTRUME', 'PHOTFLAM', 'PHOTPLAM', 'PHOTFNU', 'PHOTZPT', 'PHOTBW', 'PHOTMODE', 'EXPSTART', 'EXPEND', 'DATE-OBS', 'TIME-OBS', 'UPDA_CTX', 'CRDS_CTX', 'R_DISTOR', 'R_PHOTOM', 'R_FLAT']: if k in flt[0].header: keys[k] = flt[0].header[k] bpdata = None _nsat = None if flt[0].header["TELESCOP"] in ["JWST"]: bits = 4 include_saturated = False # bpdata = 0 _inst = flt[0].header["INSTRUME"] _det = flt[0].header['DETECTOR'] if (extra_wfc3ir_badpix) & (_inst in ['NIRCAM','NIRISS']): bpfiles = [os.path.join(os.path.dirname(__file__), f'data/nrc_badpix_240627_{_det}.fits.gz')] bpfiles += [os.path.join(os.path.dirname(__file__), f'data/nrc_badpix_240112_{_det}.fits.gz')] bpfiles += [os.path.join(os.path.dirname(__file__), f'data/nrc_badpix_231206_{_det}.fits.gz')] bpfiles += [os.path.join(os.path.dirname(__file__), f'data/jwst_nircam_newhot_{_det}_extra20231129.fits.gz')] bpfiles += [os.path.join(os.path.dirname(__file__), f'data/nrc_badpix_20230710_{_det}.fits.gz')] bpfiles += [os.path.join(os.path.dirname(__file__), f'data/{_det.lower()}_badpix_20241001.fits.gz')] # NIRISS bpfiles += [os.path.join(os.path.dirname(__file__), f'data/{_det.lower()}_badpix_20230710.fits.gz')] # NIRISS bpfiles += [os.path.join(os.path.dirname(__file__), f'data/nrc_badpix_230701_{_det}.fits.gz')] bpfiles += [os.path.join(os.path.dirname(__file__), f'data/nrc_badpix_230120_{_det}.fits.gz')] bpfiles += [os.path.join(os.path.dirname(__file__), f'data/nrc_lowpix_0916_{_det}.fits.gz')] for bpfile in bpfiles: if os.path.exists(bpfile): bpdata = pyfits.open(bpfile)[0].data if True: bpdata = nd.binary_dilation(bpdata > 0) * 1024 else: bpdata = (bpdata > 0) * 1024 msg = f"Use extra badpix in {bpfile}" log_comment(LOGFILE, msg, verbose=verbose) break if bpdata is None: bpdata = np.zeros(flt["SCI"].data.shape, dtype=int) # Directly flag hot pixels rather than use mask if (_inst in ["NIRCAM"]) & (nircam_hot_pixel_kwargs is not None): _sn, dq_flag, _count = flag_nircam_hot_pixels( flt, **nircam_hot_pixel_kwargs ) if (_count > 0) & (_count < 8192): bpdata |= ((dq_flag > 0) * 1024).astype(bpdata.dtype) # extra_wfc3ir_badpix = False else: msg = f" flag_nircam_hot_pixels: {_count} out of range" log_comment(LOGFILE, msg, verbose=verbose) elif (_inst in ["NIRISS"]) & (niriss_hot_pixel_kwargs is not None): _sn, dq_flag, _count = flag_nircam_hot_pixels( flt, **niriss_hot_pixel_kwargs ) if (_count > 0) & (_count < 8192): bpdata |= ((dq_flag > 0) * 1024).astype(bpdata.dtype) # extra_wfc3ir_badpix = False else: msg = f" flag_nircam_hot_pixels: {_count} out of range (NIRISS)" log_comment(LOGFILE, msg, verbose=verbose) if (snowblind_kwargs is not None) & (_inst in ["NIRCAM", "NIRISS"]): # Already processed with snowblind? if "SNOWBLND" in flt["SCI"].header: msg = "Already processed with `snowblind`" log_comment(LOGFILE, msg, verbose=verbose) else: sdq, sfrac = jwst_snowblind_mask(file, **snowblind_kwargs) if sdq is not None: bpdata |= sdq if get_dbmask: dbmask = apply_region_mask_from_db( os.path.basename(file), in_place=False, verbose=True ) if dbmask is not None: bpdata |= dbmask * 1 # NIRISS ghost mask if (_inst in ["NIRISS"]) & (niriss_ghost_kwargs is not None): if "verbose" not in niriss_ghost_kwargs: niriss_ghost_kwargs["verbose"] = verbose _ghost = niriss_ghost_mask(flt, **niriss_ghost_kwargs) bpdata |= _ghost * 1024 # Negative if "MDRIZSKY" in flt["SCI"].header: _low = (flt["SCI"].data - flt["SCI"].header["MDRIZSKY"]) < -5 * flt[ "ERR" ].data msg = f"Extra -5 sigma low pixels: N= {_low.sum()} " msg += f" ( {_low.sum()/_low.size*100:.1} %)" log_comment(LOGFILE, msg, verbose=verbose) bpdata |= _low * 1024 # History of saturated pixels for persistence if saturated_lookback > 0: if _det not in saturated_tables: saturated_tables[_det] = {'expstart':[], 'ij':[]} _start = flt[0].header['EXPSTART'] _df = get_saturated_pixel_table( file=file, output="df", **sat_kwargs, ) _sat_tab = saturated_tables[_det] _sat_tab["expstart"].append(_start) _sat_tab["ij"].append(_df) if write_sat_file: sat_file = file.replace(".fits", ".sat.csv.gz") _df.to_csv(sat_file, index=False) _sat_history = np.zeros_like(bpdata, dtype=bool) _sat_count = 0 for _starti, _df in zip(_sat_tab["expstart"], _sat_tab["ij"]): if ( (_starti < _start) & ((_start - _starti)*86400 < saturated_lookback) ): _sat_history[_df.i, _df.j] |= True _sat_count += 1 _nsat = _sat_history.sum() bpdata |= _sat_history * 1024 msg = ( f"Found {_nsat} saturated pixels in {_sat_count} " f" previous {_det} exposures within {saturated_lookback:.0f} sec" ) log_comment(LOGFILE, msg, verbose=verbose) if query_persistence_pixels & (saturated_lookback > 0): try: _pers = query_persistence( file, saturated_lookback=saturated_lookback ) if len(_pers) > 0: bpdata[_pers["i"], _pers["j"]] |= 1024 except: pass elif flt[0].header["DETECTOR"] == "IR": bits = 576 if extra_wfc3ir_badpix: if (i == indices[0]) | (not hasattr(bpdata, "shape")): bpfile = os.path.join( os.path.dirname(__file__), "data/wfc3ir_badpix_spars200_22.03.31.fits.gz", ) bpdata = pyfits.open(bpfile)[0].data msg = f"Use extra badpix in {bpfile}" log_comment(LOGFILE, msg, verbose=verbose) else: bits = 64 + 32 bpdata = 0 if include_saturated: bits |= 256 if keep_bits is not None: bits |= keep_bits if scale_photom: # Scale to a particular JWST context and update header keywords # like PHOTFLAM, PHOTFNU _scale_jwst_photom = jwst_crds_photom_scale( flt, update=True, context=context, verbose=verbose ) # These might have changed for k in ["PHOTFLAM", "PHOTFNU", "PHOTMJSR", "ZP", "R_PHOTOM", "CRDS_CTX"]: if k in flt[0].header: keys[k] = flt[0].header[k] # Additional scaling _key, _scale_photom = get_photom_scale(flt[0].header, verbose=verbose) else: _scale_photom = 1.0 if "PHOTFLAM" in keys: msg = " 0 PHOTFLAM={0:.2e}, scale={1:.3f}" msg = msg.format(keys["PHOTFLAM"], _scale_photom) log_comment(LOGFILE, msg, verbose=verbose) if ref_photflam is None: ref_photflam = keys["PHOTFLAM"] median_weight = None for ext in [1, 2, 3, 4]: if ("SCI", ext) in flt: h = flt[("SCI", ext)].header if "MDRIZSKY" in h: sky_value = h["MDRIZSKY"] else: sky_value = 0 if ("BKG", ext) in flt: has_bkg = True sky = flt["BKG", ext].data + sky_value else: has_bkg = False sky = sky_value if h["BUNIT"] == "ELECTRONS": to_per_sec = 1.0 / keys["EXPTIME"] else: to_per_sec = 1.0 phot_scale = to_per_sec * _scale_photom if "PHOTFLAM" in h: if ref_photflam is None: ref_photflam = h["PHOTFLAM"] phot_scale = h["PHOTFLAM"] / ref_photflam * _scale_photom if "PHOTFNU" not in h: h["PHOTFNU"] = ( photfnu_from_photflam(h["PHOTFLAM"], h["PHOTPLAM"]), "Inverse sensitivity, Jy/DN", ) msg = " PHOTFLAM={0:.2e}, scale={1:.3f}" msg = msg.format(h["PHOTFLAM"], phot_scale) log_comment(LOGFILE, msg, verbose=verbose) keys["PHOTFLAM"] = h["PHOTFLAM"] for k in [ "PHOTFLAM", "PHOTPLAM", "PHOTFNU", "PHOTZPT", "PHOTBW", "PHOTMODE", "PHOTMJSR", "PIXAR_SR", ]: if k in h: keys[k] = h[k] phot_scale *= to_per_sec try: wcs_i = pywcs.WCS(header=flt[("SCI", ext)].header, fobj=flt) wcs_i.pscale = get_wcs_pscale(wcs_i) except KeyError: print(f"Failed to initialize WCS on {file}[SCI,{ext}]") continue wcsh = to_header(wcs_i) row = [file, ext, keys["EXPTIME"]] if wcs_colnames is None: wcs_colnames = ["file", "ext", "exptime"] for k in wcsh: wcs_colnames.append(k.lower()) wcs_keys[k.lower()] = wcsh[k] for k in wcs_colnames[3:]: ku = k.upper() if ku not in wcsh: print(f"Keyword {ku} not found in WCS header") row.append(wcs_keys[k] * 0) else: row.append(wcsh[ku]) for k in wcsh: if k.lower() not in wcs_colnames: print(f"Extra keyword {ku} found in WCS header") wcs_rows.append(row) err_data = flt[("ERR", ext)].data * phot_scale # JWST: just 1,1024,4096 bits if flt[0].header["TELESCOP"] in ["JWST"]: bad_bits = 1 | 1024 | 4096 if jwst_dq_flags is not None: bad_bits |= get_jwst_dq_bit(jwst_dq_flags, verbose=verbose) dq = flt[("DQ", ext)].data & bad_bits dq |= bpdata.astype(dq.dtype) # Clipping threshold for BKG extensions, global at top # BKG_CLIP = [scale, percentile_lo, percentile_hi] if has_bkg & (BKG_CLIP is not None): # percentiles bkg_lo, bkg_hi = np.nanpercentile( flt["BKG"].data[dq == 0], BKG_CLIP[1:3] ) # make sure lower (upper) limit is negative (positive) clip_lo = -np.abs(bkg_lo) clip_hi = np.abs(bkg_hi) _bad_bkg = flt["BKG"].data < BKG_CLIP[0] * bkg_lo _bad_bkg |= flt["BKG"].data > BKG_CLIP[0] * bkg_hi # OR into dq mask msg = f"Bad bkg pixels: N= {_bad_bkg.sum()} " msg += f" ( {_bad_bkg.sum()/_bad_bkg.size*100:.1} %)" log_comment(LOGFILE, msg, verbose=verbose) dq |= _bad_bkg * 1024 else: dq = mod_dq_bits(flt[("DQ", ext)].data, okbits=bits) | bpdata wht = 1 / err_data ** 2 _msk = (err_data <= 0) | (dq > 0) wht[_msk] = 0 if weight_type == "jwst_var": _var = err_data**2 _var[_msk] = 0 var_list.append(_var) if weight_type.startswith("jwst"): if (("VAR_RNOISE", ext) in flt) & (rnoise_percentile is not None): _rn_data = flt[("VAR_RNOISE", ext)].data rnoise_value = np.nanpercentile( _rn_data[~_msk], rnoise_percentile ) _msk |= _rn_data >= rnoise_value if ("VAR_POISSON", ext) in flt: # Weight by VAR_RNOISE + median(VAR_POISSON) if (~_msk).sum() > 0: _var_data = flt[("VAR_POISSON", ext)].data[~_msk] med_poisson = np.nanmedian(_var_data) var = flt["VAR_RNOISE", ext].data + med_poisson var *= phot_scale ** 2 wht = 1.0 / var wht[_msk | (var <= 0)] = 0 else: # Fall back to median_err median_weight = np.nanmedian(wht[~_msk]) if (not np.isfinite(median_weight)) | ((~_msk).sum() == 0): median_weight = 0 wht[~_msk] = median_weight median_weight = np.nanmedian(wht[~_msk]) if (not np.isfinite(median_weight)) | ((~_msk).sum() == 0): median_weight = 0 msg = f" ext (SCI,{ext}), sky={sky_value:.3f}" msg += f" has_bkg:{has_bkg}" msg += f" median_weight:{median_weight:.2e}" log_comment(LOGFILE, msg, verbose=verbose) # Use median(ERR) as the full image weight, # optionally scaling by the TIME array if weight_type in ["median_err", "time"]: wht[~_msk] = median_weight if weight_type == "time": if ("TIME", ext) in flt: if flt[("TIME", ext)].data is not None: _time = flt[("TIME", ext)].data * 1 tmax = np.nanmax(_time[~_msk]) _time /= tmax wht[~_msk] *= _time[~_msk] msg = f"scale weight by (TIME,{ext})/{tmax:.1f}" log_comment(LOGFILE, msg, verbose=verbose) wht_list.append(wht) sci_i = (flt[("SCI", ext)].data - sky) * phot_scale sci_i[wht <= 0] = 0 sci_list.append(sci_i) if not hasattr(wcs_i, "pixel_shape"): wcs_i.pixel_shape = wcs_i._naxis1, wcs_i._naxis2 if not hasattr(wcs_i, "_naxis1"): wcs_i._naxis1, wcs_i._naxis2 = wcs_i._naxis wcs_list.append(wcs_i) pscale_ratio = (wcs_i.pscale / outputwcs.pscale) if count == 0: res = drizzle_array_groups( sci_list, wht_list, wcs_list, var_list=var_list, median_weight=(weight_type == 'median_variance'), outputwcs=outputwcs, scale=0.1, kernel=kernel, pixfrac=pixfrac, calc_wcsmap=calc_wcsmap, verbose=verbose, data=None, ) outsci, outwht, outvar, outctx, header, xoutwcs = res header["EXPTIME"] = flt[0].header["EXPTIME"] header["NDRIZIM"] = 1 header["PIXFRAC"] = pixfrac header["KERNEL"] = kernel header["OKBITS"] = (bits, "FLT bits treated as valid") header["PHOTSCAL"] = _scale_photom, "Scale factor applied" header["GRIZLIV"] = grizli__version, "Grizli code version" header["WHTTYPE"] = weight_type, "Exposure weighting strategy" header["RNPERC"] = rnoise_percentile, "VAR_RNOISE clip percentile for JWST" header["PSCALER"] = pscale_ratio, "Ratio of input to output pixel scales" for k in keys: header[k] = keys[k] else: # outvar = Sum(wht**2 * var) / Sum(wht)**2, so # need to accumulate updates to Sum(wht * (wht * var)) / Sum(wht) if outvar is None: varnum = None else: varnum = outvar * outwht data = outsci, outwht, outctx, varnum res = drizzle_array_groups( sci_list, wht_list, wcs_list, median_weight=(weight_type == 'median_variance'), var_list=var_list, outputwcs=outputwcs, scale=0.1, kernel=kernel, pixfrac=pixfrac, calc_wcsmap=calc_wcsmap, verbose=verbose, data=data, ) outsci, outwht, outvar, outctx = res[:4] header["EXPTIME"] += flt[0].header["EXPTIME"] header["NDRIZIM"] += 1 count += 1 header["FLT{0:05d}".format(count)] = file if median_weight is not None: header["WHT{0:05d}".format(count)] = ( median_weight, f"Median weight of exposure {count}", ) if _nsat is not None: header["SAT{0:05d}".format(count)] = ( _nsat, f"Number of pixels flagged for persistence" ) flt.close() # xfiles = glob.glob('*') # print('Clean: ', clean, xfiles) if clean: os.remove(file) if "awspath" in visit: awspath = visit["awspath"] else: awspath = ["." for f in visit["files"]] if len(awspath) == 1: awspath = [awspath[0] for f in visit["files"]] elif isinstance(awspath, str): _awspath = [awspath for f in visit["files"]] awspath = _awspath flist = ["{0}/{1}".format(awspath, visit["files"][i]) for i in indices] if dryrun: return flist elif count == 0: return None else: wcs_tab = GTable(names=wcs_colnames, rows=wcs_rows) outwht *= pscale_ratio**4 # (wcs_i.pscale / outputwcs.pscale) ** 4 if outvar is not None: # Extra factors of the pixel area ratio in variance, which comes from # outvar = varnum / outwht outvar *= pscale_ratio**-2 return outsci, outwht, outvar, outctx, header, flist