make_SEP_catalog_from_arrays¶
- grizli.prep.make_SEP_catalog_from_arrays(sci, err, mask, wcs=None, threshold=2.0, ZP=25, get_background=True, detection_params={'clean': True, 'clean_param': 1, 'deblend_cont': 0.001, 'deblend_nthresh': 32, 'filter_kernel': array([[0.0049, 0.0213, 0.0513, 0.0687, 0.0513, 0.0213, 0.0049], [0.0213, 0.0921, 0.2211, 0.296, 0.2211, 0.0921, 0.0213], [0.0513, 0.2211, 0.5307, 0.7105, 0.5307, 0.2211, 0.0513], [0.0687, 0.296, 0.7105, 0.9511, 0.7105, 0.296, 0.0687], [0.0513, 0.2211, 0.5307, 0.7105, 0.5307, 0.2211, 0.0513], [0.0213, 0.0921, 0.2211, 0.296, 0.2211, 0.0921, 0.0213], [0.0049, 0.0213, 0.0513, 0.0687, 0.0513, 0.0213, 0.0049]]), 'filter_type': 'conv', 'minarea': 9}, segmentation_map=False, exposure_footprints=None, verbose=True)[source]¶
Make a catalog from arrays using
sep
- Parameters
- sci2D array
Data array
- err2D array
Uncertainties in same units as
sci
- maskbool array
sep
masks values wheremask > 0
- wcs
WCS
WCS associated with data arrays
- threshfloat
Detection threshold for
sep.extract
- ZPfloat
AB magnitude zeropoint of data arrays
- get_backgroundbool
not used
- detection_paramsdict
Keyword arguments for
sep.extract
- segmentation_mapbool
Also create a segmentation map
- exposure_footprintslist, None
An optional list of objects that can be parsed with
sregion.SRegion
. If specified, add a columnnexp
to the catalog corresponding to the number of entries in the list that overlap with a particular source position- verbosebool
Print status messages
- Returns
- tab
Table
Source catalog
- segarray, None
Segmentation map, if requested
- tab