Source code for grizli.pipeline.auto_script

"""
Automatic processing scripts for grizli
"""
import os
import inspect
import traceback
import glob
import time
import warnings
import gc

import yaml

import numpy as np
import astropy.io.fits as pyfits
import astropy.wcs as pywcs

from .. import prep, utils, GRIZLI_PATH
from .. import catalog as grizli_catalog

from .default_params import UV_N_FILTERS, UV_M_FILTERS, UV_W_FILTERS
from .default_params import OPT_N_FILTERS, OPT_M_FILTERS, OPT_W_FILTERS
from .default_params import IR_N_FILTERS, IR_M_FILTERS, IR_W_FILTERS
from .default_params import NIRISS_FILTERS, NIRCAM_SW_FILTERS, NIRCAM_LW_FILTERS
from .default_params import ALL_IMAGING_FILTERS, VALID_FILTERS
from .default_params import UV_GRISMS, OPT_GRISMS, IR_GRISMS, GRIS_REF_FILTERS

from .default_params import get_yml_parameters, write_params_to_yml

# needed for function definitions
args = get_yml_parameters()

if False:
    np.seterr(divide='ignore', invalid='ignore', over='ignore', under='ignore')

# Only fetch F814W optical data for now
#ONLY_F814W = True
ONLY_F814W = False


[docs]def get_extra_data(root='j114936+222414', HOME_PATH='/Volumes/Pegasus/Grizli/Automatic', PERSIST_PATH=None, instruments=['WFC3'], filters=['F160W', 'F140W', 'F098M', 'F105W'], radius=2, run_fetch=True, from_mast=True, reprocess_parallel=True, s3_sync=False): """ Not used [2023] """ import os import glob import numpy as np from hsaquery import query, fetch, fetch_mast from hsaquery.fetch import DEFAULT_PRODUCTS if PERSIST_PATH is None: PERSIST_PATH = os.path.join(HOME_PATH, root, 'Persistence') tab = utils.GTable.gread(os.path.join(HOME_PATH, f'{root}_footprint.fits')) # Fix CLEAR filter names for i, filt_i in enumerate(tab['filter']): if 'clear' in filt_i.lower(): spl = filt_i.lower().split(';') if len(spl) > 1: for s in spl: if 'clear' not in s: #print(filt_i, s) filt_i = s.upper() break tab['filter'][i] = filt_i.upper() ra, dec = tab.meta['RA'], tab.meta['DEC'] fp = np.load(os.path.join(HOME_PATH, '{0}_footprint.npy'.format(root)), allow_pickle=True)[0] radius = np.sqrt(fp.area*np.cos(dec/180*np.pi))*60/np.pi xy = np.array(fp.boundary.convex_hull.boundary.xy) dims = np.array([(xy[0].max()-xy[0].min())*np.cos(dec/180*np.pi), xy[1].max()-xy[1].min()])*60 extra = query.run_query(box=[ra, dec, radius], proposid=[], instruments=instruments, extensions=['FLT'], filters=filters, extra=query.DEFAULT_EXTRA) # Fix CLEAR filter names for i, filt_i in enumerate(extra['filter']): if 'clear' in filt_i.lower(): spl = filt_i.lower().split(';') if len(spl) > 1: for s in spl: if 'clear' not in s: #print(filt_i, s) filt_i = s.upper() break extra['filter'][i] = filt_i.upper() for k in tab.meta: extra.meta[k] = tab.meta[k] extra.write(os.path.join(HOME_PATH, root, 'extra_data.fits'), format='fits', overwrite=True) CWD = os.getcwd() os.chdir(os.path.join(HOME_PATH, root, 'RAW')) if run_fetch: if from_mast: out = fetch_mast.get_from_MAST(extra, inst_products=DEFAULT_PRODUCTS, direct=True, path=os.path.join(HOME_PATH, root, 'RAW'), skip_existing=True) else: curl = fetch.make_curl_script(extra, level=None, script_name='extra.sh', inst_products={'WFC3/UVIS': ['FLC'], 'WFPC2/PC': ['C0M', 'C1M'], 'WFC3/IR': ['RAW'], 'ACS/WFC': ['FLC']}, skip_existing=True, output_path=os.path.join(HOME_PATH, root, 'RAW'), s3_sync=s3_sync) os.system('sh extra.sh') files = glob.glob('*raw.fits.gz') files.extend(glob.glob('*fl?.fits.gz')) for file in files: print('gunzip '+file) os.system('gunzip {0}'.format(file)) else: return extra remove_bad_expflag(field_root=root, HOME_PATH=HOME_PATH, min_bad=2) # Reprocess the RAWs into FLTs status = os.system("python -c 'from grizli.pipeline import reprocess; reprocess.reprocess_wfc3ir(parallel={0})'".format(reprocess_parallel)) if status != 0: from grizli.pipeline import reprocess reprocess.reprocess_wfc3ir(parallel=False) # Persistence products os.chdir(PERSIST_PATH) persist_files = fetch.persistence_products(extra) for file in persist_files: if not os.path.exists(os.path.basename(file)): print(file) os.system('curl -O {0}'.format(file)) for file in persist_files: root = os.path.basename(file).split('.tar.gz')[0] if os.path.exists(root): print('Skip', root) continue if not os.path.exists(file): print('Persistence tar file {0} not found'.format(file)) continue # Ugly callout to shell os.system('tar xzvf {0}.tar.gz'.format(root)) # Clean unneeded files clean_files = glob.glob('{0}/*extper.fits'.format(root)) clean_files += glob.glob('{0}/*flt_cor.fits'.format(root)) for f in clean_files: os.remove(f) # Symlink to ./ pfiles = glob.glob('{0}/*persist.fits'.format(root)) if len(pfiles) > 0: for f in pfiles: if not os.path.exists(os.path.basename(f)): os.system('ln -sf {0} ./'.format(f)) os.chdir(CWD)
[docs]def create_path_dict(root='j142724+334246', home='$PWD', raw=None, prep=None, extract=None, persist=None, thumbs=None, paths={}): """ Generate path dict. Default: {home} {home}/{root} {home}/{root}/RAW {home}/{root}/Prep {home}/{root}/Persistence {home}/{root}/Extractions {home}/{root}/Thumbnails If ``home`` specified as '$PWD', then will be calculated from `os.getcwd`. Only generates values for keys not already specified in `paths`. """ import copy if home == '$PWD': home = os.getcwd() base = os.path.join(home, root) if raw is None: raw = os.path.join(home, root, 'RAW') if prep is None: prep = os.path.join(home, root, 'Prep') if persist is None: persist = os.path.join(home, root, 'Persistence') if extract is None: extract = os.path.join(home, root, 'Extractions') if thumbs is None: thumbs = os.path.join(home, root, 'Thumbnaails') xpaths = copy.deepcopy(paths) for k in xpaths: if xpaths[k] is None: _ = xpaths.pop(k) if 'home' not in xpaths: xpaths['home'] = home if 'base' not in xpaths: xpaths['base'] = base if 'raw' not in xpaths: xpaths['raw'] = raw if 'prep' not in xpaths: xpaths['prep'] = prep if 'persist' not in xpaths: xpaths['persist'] = persist if 'extract' not in xpaths: xpaths['extract'] = extract if 'thumbs' not in xpaths: xpaths['thumbs'] = extract return xpaths
MIRI_FLAT_ROUND = {'F560W' : 8, 'F770W':4, 'F1000W': 5, 'F1280W': 5, 'F1500W': 8, 'F1800W': 5, 'F2100W': 4,}
[docs]def get_miri_flat_by_date(file, tsplit=MIRI_FLAT_ROUND, verbose=True): """ MIRI flats computed by date Flat-files defined by >>> tsplit = {'F560W' : 8, 'F770W':4, 'F1000W': 5, 'F1280W': 5, 'F1500W': 8, 'F1800W': 5, 'F2100W': 4 } >>> tkey = np.round(t_min/tsplit[FILTER]) >>> file = f'miri-{FILTER}-{tkey}_skyflat.fits' Parameters ---------- file : str MIRI exposure filename, with header keywords EXPSTART and FILTER tsplit : dict Date rounding factors by filter Returns ------- flat_file : str Path to the flat file, ``None`` if not found """ # try: # from .. import GRIZLI_PATH # except ImportError: # from grizli import utils, GRIZLI_PATH tsplit = {'F770W':4, 'F1800W': 5, 'F560W' : 8, 'F1280W': 5, 'F1500W': 8, 'F1000W': 5, 'F2100W': 4, } with pyfits.open(file) as im: t_min = im[0].header['EXPSTART'] filt = im[0].header['FILTER'] tkey = '{0:.0f}'.format(np.round(t_min/tsplit[filt])) flat_key = f'miri-{filt.lower()}-{tkey}_skyflat.fits' flat_file = None for path in [os.path.join(GRIZLI_PATH,'CONF'), '/mnt/efs/fs1/telescopes/MiriDateFlats']: flat_file_i = os.path.join(path, flat_key) if os.path.exists(flat_file_i): flat_file = flat_file_i break msg = f'get_miri_flat_by_date: {file} {flat_key} - {flat_file}' utils.log_comment(utils.LOGFILE, msg, show_date=False, verbose=verbose) return flat_file
[docs]def go(root='j010311+131615', HOME_PATH='$PWD', RAW_PATH=None, PREP_PATH=None, PERSIST_PATH=None, EXTRACT_PATH=None, CRDS_CONTEXT=None, filters=args['filters'], fetch_files_args=args['fetch_files_args'], global_miri_skyflat=False, inspect_ramps=False, is_dash=False, run_prepare_dash=True, run_parse_visits=True, is_parallel_field=False, parse_visits_args=args['parse_visits_args'], manual_alignment=False, manual_alignment_args=args['manual_alignment_args'], min_gaia_count=128, gaia_mag_limits=[16,20.5,0.05], preprocess_args=args['preprocess_args'], visit_prep_args=args['visit_prep_args'], persistence_args=args['persistence_args'], redo_persistence_mask=False, run_fine_alignment=True, fine_backup=True, fine_alignment_args=args['fine_alignment_args'], make_mosaics=True, mosaic_args=args['mosaic_args'], mosaic_drizzle_args=args['mosaic_drizzle_args'], mask_spikes=False, mosaic_driz_cr_type=0, make_phot=True, multiband_catalog_args=args['multiband_catalog_args'], only_preprocess=False, overwrite_fit_params=False, grism_prep_args=args['grism_prep_args'], refine_with_fits=True, run_extractions=False, include_photometry_in_fit=False, extract_args=args['extract_args'], make_thumbnails=True, thumbnail_args=args['thumbnail_args'], make_final_report=True, get_dict=False, kill='', use_jwst_crds=False, **kwargs ): """ Run the full pipeline for a given target Parameters ---------- root : str Rootname of the `mastquery` file. extract_maglim : [min, max] Magnitude limits of objects to extract and fit. """ #isJWST = visit_prep_args['isJWST'] # Function defaults if get_dict: if get_dict <= 2: # Default function arguments (different value to avoid recursion) default_args = go(get_dict=10) frame = inspect.currentframe() args = inspect.getargvalues(frame).locals for k in ['root', 'HOME_PATH', 'frame', 'get_dict']: if k in args: args.pop(k) if get_dict == 2: # Print keywords summary if len(kwargs) > 0: print('\n*** Extra args ***\n') for k in kwargs: if k not in default_args: print('\'{0}\':{1},'.format(k, kwargs[k])) print('\n*** User args ***\n') for k in args: if k in default_args: if args[k] != default_args[k]: print('\'{0}\':{1},'.format(k, args[k])) print('\n*** Default args ***\n') for k in args: if k in default_args: print('\'{0}\':{1},'.format(k, args[k])) return args else: return args # import os # import glob # import traceback # # try: from .. import multifit from . import auto_script except: from grizli import multifit from grizli.pipeline import auto_script # #import grizli.utils import matplotlib.pyplot as plt # Silence numpy and astropy warnings utils.set_warnings() PATHS = create_path_dict(root=root, home=HOME_PATH, raw=RAW_PATH, prep=PREP_PATH, persist=PERSIST_PATH, extract=EXTRACT_PATH) fpfile = os.path.join(PATHS['home'], '{0}_footprint.fits'.format(root)) exptab = utils.GTable.gread(fpfile) # Fix CLEAR filter names for i, filt_i in enumerate(exptab['filter']): if 'clear' in filt_i.lower(): spl = filt_i.lower().split(';') if len(spl) > 1: for s in spl: if 'clear' not in s: #print(filt_i, s) filt_i = s.upper() break exptab['filter'][i] = filt_i.upper() utils.LOGFILE = os.path.join(PATHS['home'], f'{root}.auto_script.log.txt') utils.log_comment(utils.LOGFILE, '### Pipeline start', show_date=True) if CRDS_CONTEXT is not None: utils.log_comment(utils.LOGFILE, f"# export CRDS_CONTEXT='{CRDS_CONTEXT}'", show_date=True) os.environ['CRDS_CONTEXT'] = CRDS_CONTEXT # Working directory os.chdir(PATHS['home']) ###################### # Preliminary gaia catalog # Get gaia catalog try: gaia = grizli_catalog.gaia_catalog_for_assoc(assoc_name=root) msg = f"{root} : found {gaia['valid'].sum()} GAIA sources" utils.log_comment(utils.LOGFILE, msg, show_date=False, verbose=True) gaia.write(f'{root}.gaia.fits', overwrite=True) prep.table_to_radec(gaia[gaia['valid']], f'{root}.gaia.radec') prep.table_to_regions(gaia[gaia['valid']], f'{root}.gaia.reg') if gaia['valid'].sum() > min_gaia_count: preprocess_args['master_radec'] = os.path.join(PATHS['home'], f'{root}.gaia.radec') visit_prep_args['align_mag_limits'] = gaia_mag_limits msg = f"{root} : Use {root}.gaia.radec as master_radec" msg += f"\n{root} : Set align_mag_limits={gaia_mag_limits}" utils.log_comment(utils.LOGFILE, msg, show_date=False, verbose=True) except: utils.log_exception(utils.LOGFILE, traceback) pass ###################### # Download data if fetch_files_args is not None: fetch_files_args['reprocess_clean_darks'] &= (not is_dash) auto_script.fetch_files(field_root=root, HOME_PATH=HOME_PATH, paths=PATHS, filters=filters, **fetch_files_args) else: os.chdir(PATHS['prep']) if global_miri_skyflat: os.chdir(PATHS['raw']) files = glob.glob('*mirimage*rate.fits') if len(files) > 0: files.sort() skyfile = get_miri_flat_by_date(files[0]) if skyfile is None: skyfile = os.path.join(PATHS['prep'], f'{root}_skyflat.fits') msg = f"{root} : global_miri_skyflat N={len(files)}" utils.log_comment(utils.LOGFILE, msg, show_date=False, verbose=True) os.chdir(PATHS['prep']) # Don't redo if file found if not os.path.exists(skyfile): for file in files: prep.fresh_flt_file(file, use_skyflats=False) prep.make_visit_average_flat({'product':root, 'files':files}, dilate=1, threshold=5, clip_max=np.minimum(len(files)//2,4), apply=False) visit_prep_args['miri_skyflat'] = False visit_prep_args['use_skyflats'] = False visit_prep_args['miri_skyfile'] = skyfile if is_dash & run_prepare_dash: from wfc3dash import process_raw os.chdir(PATHS['raw']) process_raw.run_all() files = glob.glob(os.path.join(PATHS['raw'], '*_fl*fits')) files += glob.glob(os.path.join(PATHS['raw'], '*_c[01]m.fits')) files += glob.glob(os.path.join(PATHS['raw'], '*_rate.fits')) files += glob.glob(os.path.join(PATHS['raw'], '*_cal.fits')) if len(files) == 0: print('No FL[TC] files found!') utils.LOGFILE = '/tmp/grizli.log' return False if kill == 'fetch_files': print('kill=\'fetch_files\'') return True if inspect_ramps: # Inspect for CR trails os.chdir(PATHS['raw']) status = os.system("python -c 'from grizli.pipeline.reprocess import inspect; inspect()'") ###################### # Parse visit associations os.chdir(PATHS['prep']) visit_file = auto_script.find_visit_file(root=root) if (visit_file is None) | run_parse_visits: # Parsing for parallel fields, where time-adjacent exposures # may have different visit IDs and should be combined if 'combine_same_pa' in parse_visits_args: if (parse_visits_args['combine_same_pa'] == -1): if is_parallel_field: parse_visits_args['combine_same_pa'] = True parse_visits_args['max_dt'] = 4./24 else: parse_visits_args['combine_same_pa'] = False parse_visits_args['max_dt'] = 1. else: parse_visits_args['combine_same_pa'] = is_parallel_field parsed = auto_script.parse_visits(field_root=root, RAW_PATH=PATHS['raw'], filters=filters, is_dash=is_dash, **parse_visits_args) else: #parsed = np.load(f'{root}_visits.npy', allow_pickle=True) parsed = load_visit_info(root, verbose=False) if kill == 'parse_visits': print('kill=\'parse_visits\'') return True visits, all_groups, info = parsed run_has_grism = np.in1d(info['FILTER'], ['G141', 'G102', 'G800L', 'GR150C', 'GR150R']).sum() > 0 # is PUPIL in info? run_has_grism |= np.in1d(info['PUPIL'], ['GRISMR', 'GRISMC']).sum() > 0 # Alignment catalogs #catalogs = ['PS1','SDSS','GAIA','WISE'] ####################### # Manual alignment if manual_alignment: os.chdir(PATHS['prep']) auto_script.manual_alignment(field_root=root, HOME_PATH=PATHS['home'], **manual_alignment_args) if kill == 'manual_alignment': print('kill=\'manual_alignment\'') return True ##################### # Initial visit footprints visit_file = find_visit_file(root=root) print(f'Initial exposure footprints in {visit_file}') check_paths = ['./', PATHS['raw'], '../RAW'] get_visit_exposure_footprints(root=root, check_paths=check_paths) ##################### # Alignment & mosaics os.chdir(PATHS['prep']) tweak_max_dist = (5 if is_parallel_field else 1) if 'tweak_max_dist' not in visit_prep_args: visit_prep_args['tweak_max_dist'] = tweak_max_dist if 'use_self_catalog' not in visit_prep_args: visit_prep_args['use_self_catalog'] = is_parallel_field auto_script.preprocess(field_root=root, HOME_PATH=PATHS['home'], PERSIST_PATH=PATHS['persist'], visit_prep_args=visit_prep_args, persistence_args=persistence_args, **preprocess_args) if kill == 'preprocess': print('kill=\'preprocess\'') visit_file = find_visit_file(root=root) print(f'Update exposure footprints in {visit_file}') check_paths = ['./', PATHS['raw'], '../RAW'] get_visit_exposure_footprints(root=root, check_paths=check_paths) return True if redo_persistence_mask: comment = '# Redo persistence masking: {0}'.format(persistence_args) print(comment) utils.log_comment(utils.LOGFILE, comment) all_flt_files = glob.glob('*_flt.fits') all_flt_files.sort() for file in all_flt_files: print(file) pfile = os.path.join(PATHS['persist'], file.replace('_flt', '_persist')) if os.path.exists(pfile): prep.apply_persistence_mask(file, path=PATHS['persist'], **persistence_args) ########## # Fine alignment fine_files = glob.glob('{0}*fine.png'.format(root)) if (run_fine_alignment == 2) & (len(fine_files) > 0) & (len(visits) > 1): msg = '\n\n### Redo visit-level mosaics and catalogs for fine alignment\n\n' utils.log_comment(utils.LOGFILE, msg, show_date=True, verbose=True) keep_visits = [] for visit in visits: visit_files = glob.glob(visit['product']+'*.cat.*') visit_files += glob.glob(visit['product']+'_dr*') visit_files += glob.glob(visit['product']+'*seg.fits*') if len(visit_files) > 0: keep_visits.append(visit) for file in visit_files: os.remove(file) # Redrizzle visit-level mosaics and remake catalogs prep.drizzle_overlaps(keep_visits, check_overlaps=False, skysub=False, static=False, pixfrac=0.5, scale=None, final_wcs=False, fetch_flats=False, final_rot=None, include_saturated=True) # Make new catalogs for visit in keep_visits: if len(visit['files']) == 0: continue visit_filter = visit['product'].split('-')[-1] is_single = len(visit['files']) == 1 isACS = '_flc' in visit['files'][0] isWFPC2 = '_c0' in visit['files'][0] if visit_filter in ['g102', 'g141', 'g800l', 'g280']: print('# Skip grism visit: {0}'.format(visit['product'])) continue # New catalog if visit_prep_args['align_thresh'] is None: thresh = 2.5 else: thresh = visit_prep_args['align_thresh'] cat = prep.make_SEP_catalog(root=visit['product'], threshold=thresh) # New region file prep.table_to_regions(cat, '{0}.cat.reg'.format(visit['product'])) # New radec if not ((isACS | isWFPC2) & is_single): # 140 brightest or mag range clip = (cat['MAG_AUTO'] > 18) & (cat['MAG_AUTO'] < 23) clip &= cat['MAGERR_AUTO'] < 0.05 clip &= utils.catalog_mask(cat, max_err_percentile=visit_prep_args['max_err_percentile'], pad=visit_prep_args['catalog_mask_pad'], pad_is_absolute=False, min_flux_radius=1.) NMAX = 140 so = np.argsort(cat['MAG_AUTO'][clip]) if clip.sum() > NMAX: so = so[:NMAX] prep.table_to_radec(cat[clip][so], '{0}.cat.radec'.format(visit['product'])) for file in fine_files: print('rm {0}'.format(file)) os.remove(file) fine_files = [] if (len(fine_files) == 0) & (run_fine_alignment > 0) & (len(visits) > 1): fine_catalogs = ['GAIA', 'PS1', 'DES', 'SDSS', 'WISE'] try: out = auto_script.fine_alignment(field_root=root, HOME_PATH=PATHS['home'], **fine_alignment_args) plt.close() # Update WCS headers with fine alignment auto_script.update_wcs_headers_with_fine(root, backup=fine_backup) except: utils.log_exception(utils.LOGFILE, traceback) utils.log_comment(utils.LOGFILE, "# !! Fine alignment failed") # Update the visits file with the new exposure footprints visit_file = auto_script.find_visit_file(root=root) print('Update exposure footprints in {0}'.format(visit_file)) check_paths = ['./', PATHS['raw'], '../RAW'] get_visit_exposure_footprints(root=root, check_paths=check_paths) # Make combined mosaics no_mosaics_found = len(glob.glob(f'{root}-ir_dr?_sci.fits')) == 0 if no_mosaics_found & make_mosaics: skip_single = preprocess_args['skip_single_optical_visits'] if 'fix_stars' in visit_prep_args: fix_stars = visit_prep_args['fix_stars'] else: fix_stars = False # For running at the command line # if False: # mos_args = {'mosaic_args': kwargs['mosaic_args'], # 'fix_stars': kwargs['visit_prep_args']['fix_stars'], # 'mask_spikes': kwargs['mask_spikes'], 'skip_single_optical_visits': kwargs['preprocess_args']['skip_single_optical_visits']} # auto_script.make_combined_mosaics(root, **mos_args) make_combined_mosaics(root, mosaic_args=mosaic_args, fix_stars=fix_stars, mask_spikes=mask_spikes, skip_single_optical_visits=skip_single, mosaic_driz_cr_type=mosaic_driz_cr_type, mosaic_drizzle_args=mosaic_drizzle_args) # Make PSFs. Always set get_line_maps=False since PSFs now # provided for each object. mosaic_files = glob.glob('{0}-f*sci.fits'.format(root)) if (not is_dash) & (len(mosaic_files) > 0): print('Make field PSFs') auto_script.field_psf(root=root, PREP_PATH=PATHS['prep'], RAW_PATH=PATHS['raw'], EXTRACT_PATH=PATHS['extract'], get_line_maps=False, skip=False) # Are there full-field mosaics? mosaic_files = glob.glob(f'{root}-f*sci.fits') # Photometric catalog has_phot_file = os.path.exists(f'{root}_phot.fits') if (not has_phot_file) & make_phot & (len(mosaic_files) > 0): try: tab = auto_script.multiband_catalog( field_root=root, **multiband_catalog_args ) try: # Add columns indicating objects that fall in grism exposures phot = utils.read_catalog(f'{root}_phot.fits') out = count_grism_exposures(phot, all_groups, grisms=['g800l', 'g102', 'g141', 'gr150c', 'gr150r'], verbose=True) phot.write(f'{root}_phot.fits', overwrite=True) except: pass except: utils.log_exception(utils.LOGFILE, traceback) utils.log_comment(utils.LOGFILE, '# Run `multiband_catalog` with `detection_background=True`') multiband_catalog_args['detection_background'] = True tab = auto_script.multiband_catalog(field_root=root, **multiband_catalog_args) #tab = auto_script.multiband_catalog(field_root=root, threshold=threshold, detection_background=True, photometry_background=True, get_all_filters=False) # Make exposure json / html report auto_script.exposure_report(root, log=True) # Stop if only want to run pre-processing if (only_preprocess | (len(all_groups) == 0)): if make_thumbnails: print('#####\n# Make RGB thumbnails\n#####') if thumbnail_args['drizzler_args'] is None: thumbnail_args['drizzler_args'] = DRIZZLER_ARGS.copy() os.chdir(PATHS['prep']) #print('XXX ', thumbnail_args) auto_script.make_rgb_thumbnails(root=root, **thumbnail_args) if not os.path.exists(PATHS['thumbs']): os.mkdir(PATHS['thumbs']) os.system('mv {0}_[0-9]*.png {0}_[0-9]*.fits {1}'.format(root, PATHS['thumbs'])) if make_final_report: make_report(root, make_rgb=True) utils.LOGFILE = '/tmp/grizli.log' return True ###################### # Grism prep files = glob.glob(os.path.join(PATHS['prep'], '*GrismFLT.fits')) files += glob.glob(os.path.join(PATHS['extract'], '*GrismFLT.fits')) if len(files) == 0: os.chdir(PATHS['prep']) grp = auto_script.grism_prep(field_root=root, PREP_PATH=PATHS['prep'], EXTRACT_PATH=PATHS['extract'], **grism_prep_args) del(grp) ###################### # Grism extractions os.chdir(PATHS['extract']) ##################### # Update the contam model with the "full.fits" # files in the working directory if (len(glob.glob('*full.fits')) > 0) & (refine_with_fits): auto_script.refine_model_with_fits(field_root=root, clean=True, grp=None, master_files=None, spectrum='continuum', max_chinu=5) # Drizzled grp objects # All files if len(glob.glob(f'{root}*_grism*fits*')) == 0: grism_files = glob.glob('*GrismFLT.fits') grism_files.sort() catalog = glob.glob(f'{root}-*.cat.fits')[0] try: seg_file = glob.glob(f'{root}-*_seg.fits')[0] except: seg_file = None grp = multifit.GroupFLT(grism_files=grism_files, direct_files=[], ref_file=None, seg_file=seg_file, catalog=catalog, cpu_count=-1, sci_extn=1, pad=(64,256), use_jwst_crds=use_jwst_crds) # Make drizzle model images grp.drizzle_grism_models(root=root, kernel='point', scale=0.15) # Free grp object del(grp) if is_parallel_field: pline = auto_script.PARALLEL_PLINE.copy() else: pline = auto_script.DITHERED_PLINE.copy() # Make script for parallel processing args_file = f'{root}_fit_args.npy' if (not os.path.exists(args_file)) | (overwrite_fit_params): msg = '# generate_fit_params: ' + args_file utils.log_comment(utils.LOGFILE, msg, verbose=True, show_date=True) pline['pixscale'] = mosaic_args['wcs_params']['pixel_scale'] pline['pixfrac'] = mosaic_args['mosaic_pixfrac'] if pline['pixfrac'] > 0: pline['kernel'] = 'square' else: pline['kernel'] = 'point' has_g800l = utils.column_string_operation(info['FILTER'], ['G800L'], 'count', 'or').sum() if has_g800l > 0: min_sens = 0. fit_trace_shift = True else: min_sens = 0.001 fit_trace_shift = True try: auto_script.generate_fit_params(field_root=root, prior=None, MW_EBV=exptab.meta['MW_EBV'], pline=pline, fit_only_beams=True, run_fit=True, poly_order=7, fsps=True, min_sens=min_sens, sys_err=0.03, fcontam=0.2, zr=[0.05, 3.4], save_file=args_file, fit_trace_shift=fit_trace_shift, include_photometry=True, use_phot_obj=include_photometry_in_fit) except: # include_photometry failed? auto_script.generate_fit_params(field_root=root, prior=None, MW_EBV=exptab.meta['MW_EBV'], pline=pline, fit_only_beams=True, run_fit=True, poly_order=7, fsps=True, min_sens=min_sens, sys_err=0.03, fcontam=0.2, zr=[0.05, 3.4], save_file=args_file, fit_trace_shift=fit_trace_shift, include_photometry=False, use_phot_obj=False) # Copy for now os.system(f'cp {args_file} fit_args.npy') # Done? if (not run_extractions) | (run_has_grism == 0): # Make RGB thumbnails if make_thumbnails: print('#####\n# Make RGB thumbnails\n#####') if thumbnail_args['drizzler_args'] is None: thumbnail_args['drizzler_args'] = DRIZZLER_ARGS.copy() os.chdir(PATHS['prep']) auto_script.make_rgb_thumbnails(root=root, **thumbnail_args) if not os.path.exists(PATHS['thumbs']): os.mkdir(PATHS['thumbs']) os.system('mv {0}_[0-9]*.png {0}_[0-9]*.fits {1}'.format(root, PATHS['thumbs'])) utils.LOGFILE = '/tmp/grizli.log' return True # Run extractions (and fits) auto_script.extract(field_root=root, **extract_args) # Make RGB thumbnails if make_thumbnails: print('#####\n# Make RGB thumbnails\n#####') if thumbnail_args['drizzler_args'] is None: thumbnail_args['drizzler_args'] = DRIZZLER_ARGS.copy() os.chdir(PATHS['prep']) auto_script.make_rgb_thumbnails(root=root, **thumbnail_args) if not os.path.exists(PATHS['thumbs']): os.mkdir(PATHS['thumbs']) os.system('mv {0}_[0-9]*.png {0}_[0-9]*.fits {1}'.format(root, PATHS['thumbs'])) if extract_args['run_fit']: os.chdir(PATHS['extract']) # Redrizzle grism models grism_files = glob.glob('*GrismFLT.fits') grism_files.sort() seg_file = glob.glob(f'{root}-[fi]*_seg.fits')[0] #catalog = glob.glob(f'{root}-*.cat.fits')[0] catalog = seg_file.replace('_seg.fits','.cat.fits') grp = multifit.GroupFLT(grism_files=grism_files, direct_files=[], ref_file=None, seg_file=seg_file, catalog=catalog, cpu_count=-1, sci_extn=1, pad=(64,256), use_jwst_crds=use_jwst_crds) # Make drizzle model images grp.drizzle_grism_models(root=root, kernel='point', scale=0.15) # Free grp object del(grp) ###################### # Summary catalog & webpage auto_script.summary_catalog(field_root=root, dzbin=0.01, use_localhost=False, filter_bandpasses=None) if make_final_report: make_report(root, make_rgb=True)
[docs]def make_directories(root='j142724+334246', HOME_PATH='$PWD', paths={}): """ Make RAW, Prep, Persistence, Extractions directories """ import os paths = create_path_dict(root=root, home=HOME_PATH, paths=paths) for k in paths: if k in ['thumbs']: continue dir = paths[k] if not os.path.exists(dir): print(f'mkdir {dir}') os.mkdir(dir) os.system(f'chmod ugoa+rwx {dir}') else: print(f'directory {dir} exists') return paths
[docs]def fetch_files(field_root='j142724+334246', HOME_PATH='$PWD', paths={}, inst_products={'WFPC2/WFC': ['C0M', 'C1M'], 'WFPC2/PC': ['C0M', 'C1M'], 'ACS/WFC': ['FLC'], 'WFC3/IR': ['RAW'], 'WFC3/UVIS': ['FLC']}, remove_bad=True, reprocess_parallel=False, reprocess_clean_darks=True, s3_sync=False, fetch_flt_calibs=['IDCTAB', 'PFLTFILE', 'NPOLFILE'], filters=VALID_FILTERS, min_bad_expflag=2, fetch_only=False, force_rate=True, get_rateints=False, get_recalibrated_rate=True, recalibrate_jwst=False, s3path=None): """ Fully automatic script for fetching exposure files Parameters ---------- field_root : str """ import os import glob try: from .. import utils frame = inspect.currentframe() utils.log_function_arguments(utils.LOGFILE, frame, 'auto_script.fetch_files') except: from grizli import utils try: from .. import jwst_utils, jwst_level1 except ImportError: jwst_utils = None try: try: from mastquery import query, fetch import mastquery.utils MAST_QUERY = True instdet_key = 'instrument_name' except: from hsaquery import query, fetch MAST_QUERY = False instdet_key = 'instdet' except ImportError as ERR: warn = """{0} Get one of the query scripts from https://github.com/gbrammer/esa-hsaquery https://github.com/gbrammer/mastquery """.format(ERR) raise(ImportError(warn)) paths = create_path_dict(root=field_root, home=HOME_PATH, paths=paths) print('paths: ', paths) if not os.path.exists(paths['raw']): make_directories(root=field_root, HOME_PATH=HOME_PATH, paths=paths) tab = utils.read_catalog(os.path.join(paths['home'], f'{field_root}_footprint.fits')) # Fix CLEAR filter names for i, filt_i in enumerate(tab['filter']): if 'clear' in filt_i.lower(): spl = filt_i.lower().split(';') if len(spl) > 1: for s in spl: if 'clear' not in s: #print(filt_i, s) filt_i = s.upper() break tab['filter'][i] = filt_i.upper() use_filters = utils.column_string_operation(tab['filter'], filters, method='startswith', logical='or') # Allow all JWST for now xxx instr = [str(inst) for inst in tab['instrument_name']] jw = np.in1d(instr, ['NIRISS','NIRCAM','MIRI','NIRSPEC','FGS']) use_filters |= jw tab = tab[use_filters] # Files from s3 from_s3 = np.array([d.startswith('s3://') for d in tab['dataURL']]) jw_files = [] if s3path is not None: # Prepend s3 path to filenames msg = f'Fetch {len(tab)} files from {s3path}' utils.log_comment(utils.LOGFILE, msg, verbose=True) os.chdir(paths['raw']) for url in tab['dataURL']: s3file = os.path.join(s3path, os.path.basename(url)) _file = os.path.basename(s3file) if os.path.exists(_file): msg = f'fetch_files: {s3file} {_file} (file found)' utils.log_comment(utils.LOGFILE, msg, verbose=True) else: msg = f'fetch_files: {s3file} {_file}' utils.log_comment(utils.LOGFILE, msg, verbose=True) os.system(f'aws s3 cp {s3file} {_file}') if os.path.exists(_file) & _file.startswith('jw'): jw_files.append(_file) tab = tab[:0] jw &= False elif from_s3.sum() > 0: msg = f'Fetch {from_s3.sum()} files from S3' utils.log_comment(utils.LOGFILE, msg, verbose=True) os.chdir(paths['raw']) for s3file in tab['dataURL'][from_s3]: _file = os.path.basename(s3file) if os.path.exists(_file): msg = f'fetch_files: {s3file} {_file} (file found)' utils.log_comment(utils.LOGFILE, msg, verbose=True) else: msg = f'fetch_files: {s3file} {_file}' utils.log_comment(utils.LOGFILE, msg, verbose=True) os.system(f'aws s3 cp {s3file} {_file}') if os.path.exists(_file) & _file.startswith('jw'): jw_files.append(_file) # jw &= ~from_s3 tab = tab[~from_s3] jw &= ~from_s3 if jw.sum() > 0: # JWST msg = f'Fetch {jw.sum()} JWST files!' utils.log_comment(utils.LOGFILE, msg, verbose=True) os.chdir(paths['raw']) if 'dummy' in field_root: # Get dummy files copied to AWS for f in tab['dataURL'][jw]: _file = os.path.basename(f).replace('nis_cal','nis_rate') if not os.path.exists(_file): os.system(f'aws s3 cp s3://grizli-v2/JwstDummy/{_file} .') if os.path.exists(_file) & _file.startswith('jw'): jw_files.append(_file) else: ## Download from MAST API when data available if recalibrate_jwst: for file in tab[jw]['dataURL']: if os.path.exists(os.path.basename(file)): jw_files.append(os.path.basename(file)) continue uncal = file.replace('_rate','_uncal') uncal = uncal.replace('_cal.fits','_uncal.fits') uncal = os.path.basename(uncal) _ = jwst_level1.pipeline_level1(uncal, output_extension='_rate') if os.path.exists(uncal): os.remove(uncal) jw_files.append(uncal.replace('_uncal.fits','_rate.fits')) else: mastquery.utils.LOGFILE = utils.LOGFILE # Iterative because download script seems to skip some files? jw_i = [] iter_i = 0 while (len(jw_i) < len(tab[jw])) & (iter_i < 10): print(f'Download iteration: {iter_i}') iter_i += 1 jw_i = [] _resp = mastquery.utils.download_from_mast(tab[jw], force_rate=force_rate, get_recalibrated_rate=get_recalibrated_rate, rate_ints=get_rateints) for i, _file in enumerate(_resp): if os.path.exists(_file) & _file.startswith('jw'): jw_i.append(_file) jw_files += jw_i tab = tab[~jw] # Initialize grism files for _file in jw_files: _test = os.path.exists(_file) & (jwst_utils is not None) _jwst_grism = ('_nis_rate' in _file) with pyfits.open(_file) as im: if 'PUPIL' in im[0].header: _jwst_grism |= 'GRISM' in im[0].header['PUPIL'] _test &= _jwst_grism if _test: # Need initialization here for JWST grism exposures jwst_utils.initialize_jwst_image(_file, oneoverf_correction=False, ) jwst_utils.set_jwst_to_hst_keywords(_file, reset=True) if len(tab) > 0: # Hubble if MAST_QUERY: tab = query.get_products_table(tab, extensions=['RAW', 'C1M']) tab = tab[(tab['filter'] != 'F218W')] if ONLY_F814W: tab = tab[(tab['filter'] == 'F814W') | (tab[instdet_key] == 'WFC3/IR')] # Fetch and preprocess IR backgrounds os.chdir(paths['raw']) # Ignore files already moved to RAW/Expflag bad_files = glob.glob('./Expflag/*') badexp = np.zeros(len(tab), dtype=bool) for file in bad_files: root = os.path.basename(file).split('_')[0] badexp |= tab['observation_id'] == root.lower() is_wfpc2 = utils.column_string_operation(tab['instrument_name'], 'WFPC2', method='startswith', logical='or') use_filters = utils.column_string_operation(tab['filter'], filters, method='startswith', logical='or') fetch_selection = (~badexp) & (~is_wfpc2) & use_filters #### The curl script is deprecated now in favor of the #### more general mastquery.utils.download_from_mast function #### that works with MAST_TOKEN authorization # curl = fetch.make_curl_script(tab[fetch_selection], level=None, # script_name='fetch_{0}.sh'.format(field_root), # inst_products=inst_products, skip_existing=True, # output_path='./', s3_sync=s3_sync) #msg = 'Fetch {0} files (s3_sync={1})'.format(fetch_selection.sum(), # s3_sync) msg = 'Fetch {0} files with mastquery.utils.download_From_mast' msg = msg.format(fetch_selection.sum()) utils.log_comment(utils.LOGFILE, msg, verbose=True) # Products file_list = [] un = utils.Unique(tab['instrument_name'], verbose=False) for inst in inst_products: inst_i = un[inst] & fetch_selection if inst_i.sum() > 0: for ext in inst_products[inst]: file_list.extend([uri.replace('_raw','_'+ext.lower()) for uri in tab['dataURI']] ) # Use mastquery.utils.fetch_from_mast _resp = mastquery.utils.download_from_mast(file_list, force_rate=False, rate_ints=False) # Ugly callout to shell # os.system('sh fetch_{0}.sh'.format(field_root)) if (is_wfpc2 & use_filters).sum() > 0: # Have to get WFPC2 from ESA wfpc2_files = (~badexp) & (is_wfpc2) & use_filters curl = fetch.make_curl_script(tab[wfpc2_files], level=None, script_name='fetch_wfpc2_{0}.sh'.format(field_root), inst_products=inst_products, skip_existing=True, output_path='./', s3_sync=False) os.system('sh fetch_wfpc2_{0}.sh'.format(field_root)) else: msg = 'Warning: no files to fetch for filters={0}.'.format(filters) utils.log_comment(utils.LOGFILE, msg, verbose=True) # Gunzip if necessary files = glob.glob('*raw.fits.gz') files.extend(glob.glob('*fl?.fits.gz')) files.extend(glob.glob('*c[01]?.fits.gz')) # WFPC2 files.sort() for file in files: status = os.system('gunzip {0}'.format(file)) print('gunzip '+file+' # status="{0}"'.format(status)) if status == 256: os.system('mv {0} {1}'.format(file, file.split('.gz')[0])) if fetch_only: files = glob.glob('*raw.fits') files.sort() return files # Remove exposures with bad EXPFLAG if remove_bad: remove_bad_expflag(field_root=field_root, HOME_PATH=paths['home'], min_bad=min_bad_expflag) # EXPTIME = 0 files = glob.glob('*raw.fits') files.extend(glob.glob('*fl?.fits')) files.extend(glob.glob('*c[01]?.fits')) # WFPC2 files.sort() for file in files: try: im = pyfits.open(file) badexp = (im[0].header['EXPTIME'] < 0.1)*1 except: badexp = 2 if badexp > 0: if not os.path.exists('Expflag'): os.mkdir('Expflag') if badexp == 2: msg = f'# fetch_files : Failed to get EXPTIME from {file}[0]' else: msg = f'# fetch_files : EXPTIME = 0 for {file}' utils.log_comment(utils.LOGFILE, msg, verbose=True) os.system(f'mv {file} Expflag/') # Reprocess the RAWs into FLTs if reprocess_parallel: rep = "python -c 'from grizli.pipeline import reprocess; " rep += "reprocess.reprocess_wfc3ir(parallel={0},clean_dark_refs={1})'" os.system(rep.format(reprocess_parallel, reprocess_clean_darks)) else: from grizli.pipeline import reprocess reprocess.reprocess_wfc3ir(parallel=False, clean_dark_refs=reprocess_clean_darks) # Fetch PFLAT reference files needed for optimal drizzled weight images if fetch_flt_calibs: flt_files = glob.glob('*_fl?.fits') flt_files.sort() #calib_paths = [] for file in flt_files: cpaths = utils.fetch_hst_calibs(file, calib_types=fetch_flt_calibs) # calib_paths.extend(paths) # Copy mask files generated from preprocessing os.system('cp *mask.reg {0}'.format(paths['prep'])) # Persistence products os.chdir(paths['persist']) persist_files = fetch.persistence_products(tab) for file in persist_files: if not os.path.exists(os.path.basename(file)): print(file) os.system('curl -O {0}'.format(file)) for file in persist_files: root = os.path.basename(file).split('.tar.gz')[0] if os.path.exists(root): print('Skip', root) continue # Ugly callout to shell os.system('tar xzvf {0}.tar.gz'.format(root)) os.system('rm {0}/*extper.fits {0}/*flt_cor.fits'.format(root)) os.system('ln -sf {0}/*persist.fits ./'.format(root))
[docs]def remove_bad_expflag(field_root='', HOME_PATH='./', min_bad=2): """ Remove FLT files in RAW directory with bad EXPFLAG values, which usually corresponds to failed guide stars. The script moves files associated with an affected visit to a subdirectory >>> bad_dir = os.path.join(HOME_PATH, field_root, 'RAW', 'Expflag') Parameters ---------- field_root : str Field name, i.e., 'j123654+621608' HOME_PATH : str Base path where files are found. min_bad : int Minimum number of exposures of a visit where `EXPFLAG == 'INDETERMINATE'`. Occasionally the first exposure of a visit has this value set even though guiding is OK, so set to 2 to try to flag more problematic visits. """ import os import glob import numpy as np try: from .. import prep, utils except: from grizli import prep, utils os.chdir(os.path.join(HOME_PATH, field_root, 'RAW')) files = glob.glob('*raw.fits')+glob.glob('*flc.fits') files.sort() if len(files) == 0: return False expf = utils.header_keys_from_filelist(files, keywords=['EXPFLAG'], ext=0, colname_case=str.upper) expf.write('{0}_expflag.txt'.format(field_root), format='csv', overwrite=True) visit_name = np.array([file[:6] for file in expf['FILE']]) visits = np.unique(visit_name) for visit in visits: bad = (visit_name == visit) & (expf['EXPFLAG'] != 'NORMAL') if bad.sum() >= min_bad: logstr = '# Found bad visit: {0}, N={1}\n' logstr = logstr.format(visit, bad.sum()) utils.log_comment(utils.LOGFILE, logstr, verbose=True) if not os.path.exists('Expflag'): os.mkdir('Expflag') os.system('mv {0}* Expflag/'.format(visit))
[docs]def visit_dict_to_strings(v): """ Make visit dictionary cleaner for writing to YAML Parameters ---------- v : dict `"visit" dictionary with keys ``files``, ``product``, ``footprints`` Returns ------- newv : dict Yaml-friendly dictionary """ newv = {} if 'files' in v: newv['files'] = [str(f) for f in v['files']] if 'footprint' in v: try: newv['footprint'] = utils.SRegion(v['footprint']).s_region except NotImplementedError: newv['footprint'] = utils.SRegion(v['footprint'].buffer(2./3600)).s_region if 'footprints' in v: newv['footprints'] = [] for fp in v['footprints']: try: newv['footprints'].append(utils.SRegion(fp).s_region) except: print(fp) print(v['footprints']) raise ValueError for k in v: if k not in newv: newv[k] = v[k] return newv
[docs]def visit_dict_from_strings(v): """ Parse footprint objects from YAML visit dictionary Parameters ---------- v : dict `"visit" dictionary with keys ``files``, ``product``, ``footprints`` Returns ------- newv : dict "visit" dictionary with `~grizli.utils.Sregion` footprints """ newv = {} if 'files' in v: newv['files'] = [str(f) for f in v['files']] if 'footprint' in v: newv['footprint'] = utils.SRegion(v['footprint']).shapely[0] if 'footprints' in v: newv['footprints'] = [utils.SRegion(fp).shapely for fp in v['footprints']] for k in v: if k not in newv: newv[k] = v[k] return newv
[docs]def write_visit_info(visits, groups, info, root='j033216m2743', path='./'): """ Write visit association files Parameters ---------- visits : list List of visit dictionaries groups : list Optional ist of direct/grism visit groups info : `~astropy.table.Table` Exposure info root : str Output basename path : str Output path Returns ------- data : None Writes objects to `{path}/{root}_visits.yaml` """ new_visits = [visit_dict_to_strings(v) for v in visits] new_groups = [] for g in groups: gn = {} for k in g: gn[k] = visit_dict_to_strings(g[k]) new_groups.append(gn) data = {'visits':new_visits, 'groups': new_groups} data['info'] = {} for c in info.colnames: data['info'][c] = info[c].tolist() with open(os.path.join(path, f'{root}_visits.yaml'), 'w') as fp: yaml.dump(data, stream=fp, Dumper=yaml.Dumper)
[docs]def convert_visits_npy_to_yaml(npy_file): """ Convert a ``visits.npy`` file to ``visits.yaml`` """ root = npy_file.split('_visits.npy')[0] visits, groups, info = np.load(npy_file, allow_pickle=True) write_visit_info(visits, groups, info, root=root)
[docs]def find_visit_file(root='j033216m2743', path='./'): """ Find the yaml or npy visits file, return None if neither found """ yaml_file = os.path.join(path, f'{root}_visits.yaml') npy_file = os.path.join(path, f'{root}_visits.npy') if os.path.exists(yaml_file): return yaml_file elif os.path.exists(npy_file): return npy_file else: return None
[docs]def load_visits_yaml(file): """ Load a {root}_visits.yaml file Parameters ---------- file : str Filename of a ``visits.yaml`` file Returns ------- visits, groups, info """ with open(file) as fp: data = yaml.load(fp, Loader=yaml.Loader) visits = [visit_dict_from_strings(v) for v in data['visits']] groups = [] for g in data['groups']: gn = {} for k in g: gn[k] = visit_dict_from_strings(g[k]) groups.append(gn) info = utils.GTable(data['info']) return visits, groups, info
[docs]def load_visit_info(root='j033216m2743', path='./', verbose=True): """ Load visit info from a visits.npy or visits.yaml file Parameters ---------- root : str Basename of the ``visits.yaml`` file path : str Path to search for the file verbose : bool messaging Returns ------- visits : list list of "visit" dictionaries groups : list List of direct/grism visit pairs info : `~astropy.table.Table` Exposure information table """ yaml_file = os.path.join(path, f'{root}_visits.yaml') npy_file = os.path.join(path, f'{root}_visits.npy') if os.path.exists(yaml_file): msg = f'Load visit information from {yaml_file}' utils.log_comment(utils.LOGFILE, msg, verbose=verbose) visits, groups, info = load_visits_yaml(yaml_file) elif os.path.exists(npy_file): msg = f'Load visit information from {npy_file}' utils.log_comment(utils.LOGFILE, msg, verbose=verbose) visits, groups, info = np.load(npy_file, allow_pickle=True) else: msg = f'Could not find {root}_visits.yaml/npy in {path}' raise IOError(msg) return visits, groups, info
[docs]def parse_visits(files=[], field_root='', RAW_PATH='../RAW', use_visit=True, combine_same_pa=True, combine_minexp=2, is_dash=False, filters=VALID_FILTERS, max_dt=1e9, visit_split_shift=1.5, file_query='*'): """ Organize exposures into "visits" by filter / position / PA / epoch Parameters ---------- field_root : str Rootname of the ``{field_root}_visits.yaml`` file to create. RAW_PATH : str Path to raw exposures, relative to working directory use_visit, max_dt, visit_split_shift : bool, float, float See `~grizli.utils.parse_flt_files`. combine_same_pa : bool Combine exposures taken at same PA/orient + filter across visits combine_minexp : int Try to concatenate visits with fewer than this number of exposures filters : list Filters to consider Returns ------- visits : list List of "visit" dicts with keys ``product``, ``files``, ``footprint``, etc. groups : list Visit groups for direct / grism info : `~astropy.table.Table` Exposure summary table """ import copy #import grizli.prep try: from .. import prep, utils frame = inspect.currentframe() utils.log_function_arguments(utils.LOGFILE, frame, 'auto_script.parse_visits') except: from grizli import prep, utils from shapely.geometry import Polygon from scipy.spatial import ConvexHull if len(files) == 0: files = glob.glob(os.path.join(RAW_PATH, file_query+'fl[tc].fits*')) files += glob.glob(os.path.join(RAW_PATH, file_query+'c0m.fits*')) files += glob.glob(os.path.join(RAW_PATH, file_query+'c0f.fits*')) files += glob.glob(os.path.join(RAW_PATH, file_query+'rate.fits*')) files += glob.glob(os.path.join(RAW_PATH, file_query+'cal.fits*')) if len(files) == 0: raise ValueError(f'No exposure files found in {RAW_PATH}') # Remove rate files where cal exist rate_files = [] for file in files: if '_rate.fits' in file: rate_files.append(file) for file in rate_files: if file.replace('_rate.fits', '_cal.fits') in files: print(f'cal found for {file}') _ = files.pop(files.index(file)) files.sort() info = utils.get_flt_info(files) # Only F814W on ACS if ONLY_F814W: test_f814w = ((info['INSTRUME'] == 'WFC3') & (info['DETECTOR'] == 'IR')) test_f814w |= (info['FILTER'] == 'F814W') info = info[test_f814w] elif filters is not None: sel = utils.column_string_operation(info['FILTER'], filters, method='count', logical='OR') info = info[sel] if is_dash: # DASH visits split by exposure ima_files = glob.glob(os.path.join(RAW_PATH, '*ima.fits')) ima_files.sort() visits = [] for file in ima_files: # Build from IMA filename root = os.path.basename(file).split("_ima")[0][:-1] im = pyfits.open(file) filt = utils.parse_filter_from_header(im[0].header).lower() wcs = pywcs.WCS(im['SCI'].header) fp = Polygon(wcs.calc_footprint()) # q_flt.fits is the pipeline product. will always be # fewer DASH-split files files = glob.glob(os.path.join(RAW_PATH, f'{root}*[a-o]_flt.fits')) files.sort() if len(files) == 0: continue files = [os.path.basename(file) for file in files] direct = {'product': '{0}-{1}'.format(root, filt), 'files': files, 'footprint': fp} visits.append(direct) all_groups = utils.parse_grism_associations(visits, info) write_visit_info(visits, all_groups, info, root=field_root, path='./') return visits, all_groups, info visits, filters = utils.parse_flt_files(info=info, path=RAW_PATH, uniquename=True, get_footprint=True, use_visit=use_visit, max_dt=max_dt, visit_split_shift=visit_split_shift) # Remove visit number from NIRISS parallel visits for v in visits: IS_NIS_PARALLEL = v['product'].startswith('indef-01571') IS_NIS_PARALLEL |= v['product'].startswith('indef-03383') IS_NIS_PARALLEL |= v['product'].startswith('indef-04681') ks = v['product'].split('-') if IS_NIS_PARALLEL & (len(ks) == 7): vkey = ks.pop(2) v['product'] = '-'.join(ks) # Don't run combine_minexp if have grism exposures grisms = ['G141', 'G102', 'G800L', 'G280', 'GR150C', 'GR150R'] has_grism = np.in1d(info['FILTER'], grisms).sum() > 0 # is PUPIL in info? has_grism |= np.in1d(info['PUPIL'], ['GRISMR', 'GRISMC']).sum() > 0 info.meta['HAS_GRISM'] = has_grism if combine_same_pa: combined = {} for visit in visits: vspl = visit['product'].split('-') if vspl[-2][0].upper() in 'FG': # pupil-filter filter_pa = '-'.join(vspl[-3:]) prog = '-'.join(visit['product'].split('-')[-5:-4]) key = 'jw{0}-{1}'.format(prog, filter_pa) else: filter_pa = '-'.join(vspl[-2:]) prog = '-'.join(visit['product'].split('-')[-4:-3]) key = 'i{0}-{1}'.format(prog, filter_pa) if key not in combined: combined[key] = {'product': key, 'files': [], 'footprint': visit['footprint']} combined[key]['files'].extend(visit['files']) visits = [combined[k] for k in combined] # Account for timing to combine only exposures taken at an # epoch defined by `max_dt` days. msg = 'parse_visits(combine_same_pa={0}),'.format(combine_same_pa) msg += ' max_dt={1:.1f}: {0} {2:>3} visits' utils.log_comment(utils.LOGFILE, msg.format('BEFORE', max_dt, len(visits)), verbose=True, show_date=True) split_list = [] for v in visits: split_list.extend(utils.split_visit(v, max_dt=max_dt, visit_split_shift=visit_split_shift, path=RAW_PATH)) visits = split_list utils.log_comment(utils.LOGFILE, msg.format(' AFTER', max_dt, len(visits)), verbose=True, show_date=True) get_visit_exposure_footprints(visits, check_paths=['./', '../RAW', RAW_PATH]) print('** Combine same PA: **') for i, visit in enumerate(visits): print('{0} {1} {2}'.format(i, visit['product'], len(visit['files']))) elif (combine_minexp > 0) & (not has_grism): combined = [] for visit in visits: if len(visit['files']) >= combine_minexp*1: combined.append(copy.deepcopy(visit)) else: filter_pa = '-'.join(visit['product'].split('-')[-2:]) has_match = False fp = visit['footprint'] for ic, cvisit in enumerate(combined): ckey = '-'.join(cvisit['product'].split('-')[-2:]) if ckey == filter_pa: cfp = cvisit['footprint'] if cfp.intersection(fp).area > 0.2*fp.area: has_match = True cvisit['files'].extend(visit['files']) if 'footprints' in visit.keys(): cvisit['footprints'].extend(visit['footprints']) cvisit['footprint'] = cfp.union(fp) # No match, add the singleton visit if not has_match: combined.append(copy.deepcopy(visit)) visits = combined print('** Combine Singles: **') for i, visit in enumerate(visits): print('{0} {1} {2}'.format(i, visit['product'], len(visit['files']))) all_groups = utils.parse_grism_associations(visits, info) # JWST PASSAGE if (len(all_groups) > 0) and ( ('jw01571' in files[0]) or ('jw03383' in files[0]) or ('jw04681' in files[0]) ): for v in visits: if 'clear' in v['product']: print('NIRISS pure parallel direct: ', v['product']) direct = v for g in all_groups: if g['direct'] is None: g['direct'] = direct # NEXUS GO-5105 mixes F356W direct and F322W2 grism if (len(all_groups) > 0) and ( ('jw05105' in files[0]) ): for v in visits: if 'clear' in v['product']: print('NEXUS direct: ', v['product']) direct = v for g in all_groups: if g['direct'] is None: g['direct'] = direct print('\n == Grism groups ==\n') valid_groups = [] for g in all_groups: try: print(g['direct']['product'], len(g['direct']['files']), g['grism']['product'], len(g['grism']['files'])) valid_groups.append(g) except: pass all_groups = valid_groups #np.save('{0}_visits.npy'.format(field_root), [visits, all_groups, info]) write_visit_info(visits, all_groups, info, root=field_root, path='./') return visits, all_groups, info
[docs]def get_visit_exposure_footprints(root='j1000p0210', check_paths=['./', '../RAW'], simplify=1.e-6): """ Add exposure-level footprints to the visit dictionary Parameters ---------- visit_file : str, list File produced by `parse_visits` (`visits`, `all_groups`, `info`). If a list, just parse a list of visits and don't save the file. check_paths : list Look for the individual exposures in `visits[i]['files']` in these paths. simplify : float Shapely `simplify` parameter the visit footprint polygon. Returns ------- visits : dict """ if isinstance(root, str): #visits, all_groups, info = np.load(visit_file, allow_pickle=True) visits, all_groups, info = load_visit_info(root, verbose=False) else: visits = root all_groups = None fps = {} for visit in visits: visit['footprints'] = [] visit_fp = None for file in visit['files']: fp_i = None for path in check_paths: pfile = os.path.join(path, file) if not os.path.exists(pfile): pfile = os.path.join(path, file + '.gz') if os.path.exists(pfile): fp_i = utils.get_flt_footprint(flt_file=pfile) if visit_fp is None: visit_fp = fp_i.buffer(1./3600) else: visit_fp = visit_fp.union(fp_i.buffer(1./3600)) break visit['footprints'].append(fp_i) if visit_fp is not None: if simplify > 0: visit['footprint'] = visit_fp.simplify(simplify) else: visit['footprint'] = visit_fp fps[file] = fp_i # Also update visits in all_groups with `fps` if all_groups is not None: for g in all_groups: for k in ['direct', 'grism']: visit = g[k] visit['footprints'] = [] visit_fp = None for file in visit['files']: if file in fps: fp_i = fps[file] else: fp_i = None for path in check_paths: pfile = os.path.join(path, file) if not os.path.exists(pfile): pfile = os.path.join(path, file + '.gz') if os.path.exists(pfile): fp_i = utils.get_flt_footprint(flt_file=pfile) break if fp_i is not None: if visit_fp is None: visit_fp = fp_i.buffer(1./3600) else: visit_fp = visit_fp.union(fp_i.buffer(1./3600)) visit['footprints'].append(fp_i) if visit_fp is not None: if simplify > 0: visit['footprint'] = visit_fp.simplify(simplify) else: visit['footprint'] = visit_fp # Resave the file if isinstance(root, str): write_visit_info(visits, all_groups, info, root=root, path='./') #np.save(visit_file, [visits, all_groups, info]) return visits
[docs]def manual_alignment(field_root='j151850-813028', HOME_PATH='/Volumes/Pegasus/Grizli/Automatic/', skip=True, radius=5., catalogs=['PS1', 'DES', 'SDSS', 'GAIA', 'WISE'], visit_list=None, radec=None): """ Manual visit alignment Note, 2023: should still work but hasn't been tested recently """ #import pyds9 import glob import os import numpy as np #import grizli from ..prep import get_radec_catalog from .. import utils, prep, ds9 files = glob.glob('*guess') tab = utils.read_catalog(os.path.join(HOME_PATH, f'{field_root}_footprint.fits')) #visits, all_groups, info = np.load('{0}_visits.npy'.format(field_root), # allow_pickle=True) visits, all_groups, info = load_visit_info(field_root, verbose=False) use_visits = [] for visit in visits: if visit_list is not None: if visit['product'] not in visit_list: continue filt = visit['product'].split('-')[-1] if (not filt.startswith('g')): hasg = os.path.exists('{0}.align_guess'.format(visit['product'])) if hasg & skip: continue use_visits.append(visit) print(len(use_visits), len(visits)) if len(use_visits) == 0: return True if radec is None: radec, ref_catalog = get_radec_catalog(ra=np.mean(tab['ra']), dec=np.median(tab['dec']), product=field_root, reference_catalogs=catalogs, radius=radius) else: ref_catalog = catalogs[0] reference = '{0}/{1}_{2}.reg'.format(os.getcwd(), field_root, ref_catalog.lower()) ds9 = ds9.DS9() ds9.set('mode pan') ds9.set('scale zscale') ds9.set('scale log') for visit in use_visits: filt = visit['product'].split('-')[-1] if (not filt.startswith('g')): prep.manual_alignment(visit, reference=reference, ds9=ds9) ds9.set('quit')
[docs]def clean_prep(field_root='j142724+334246'): """ Clean unneeded files after the field preparation """ import glob import os #visits, all_groups, info = np.load('{0}_visits.npy'.format(field_root), # allow_pickle=True) visits, all_groups, info = load_visit_info(field_root, verbose=False) for visit in visits: for ext in ['_drz_wht', '_seg', '_bkg']: file = visit['product']+ext+'.fits' if os.path.exists(file): print('remove '+file) os.remove(file) clean_files = glob.glob('*crclean.fits') for file in clean_files: print('remove '+file) os.remove(file)
[docs]def preprocess(field_root='j142724+334246', HOME_PATH='/Volumes/Pegasus/Grizli/Automatic/', PERSIST_PATH=None, min_overlap=0.2, make_combined=True, catalogs=['PS1', 'DES', 'NSC', 'SDSS', 'GAIA', 'WISE'], use_visit=True, master_radec=None, parent_radec=None, use_first_radec=False, skip_imaging=False, clean=True, skip_single_optical_visits=True, visit_prep_args=args['visit_prep_args'], persistence_args=args['persistence_args']): """ Preprocessing script Parameters ---------- field_root : str Basename of the exposure group processed together HOME_PATH : str Base path for file processing master_radec : str Force use this radec file for astrometric alignment parent_radec : str Use this file if overlap < min_overlap for associations in the group visit_prep_args : dict Keyword arguments passed to `~grizli.prep.process_direct_grism_visit` """ try: from .. import prep, utils frame = inspect.currentframe() utils.log_function_arguments(utils.LOGFILE, frame, 'auto_script.preprocess') except: from grizli import prep, utils import os import glob import numpy as np import grizli from shapely.geometry import Polygon from scipy.spatial import ConvexHull import copy if PERSIST_PATH is None: PERSIST_PATH = os.path.join(HOME_PATH, field_root, 'Persistence') visits, all_groups, info = load_visit_info(field_root, verbose=False) # Grism visits master_footprint = None radec = None for i in range(len(all_groups)): direct = all_groups[i]['direct'] grism = all_groups[i]['grism'] print(i, direct['product'], len(direct['files']), grism['product'], len(grism['files'])) if len(glob.glob(grism['product']+'_dr?_sci.fits')) > 0: print('Skip grism', direct['product'], grism['product']) continue # Do all ACS G800L files exist? if 'g800l' in grism['product']: test_flc = True for file in grism['files']: test_flc &= os.path.exists(file) if test_flc: print('Skip grism (all FLC exist)', direct['product'], grism['product']) continue radec = None if master_radec is not None: radec = master_radec best_overlap = 0. if master_radec == 'astrometry_db': radec = prep.get_visit_radec_from_database(direct) if radec is None: radec_files = glob.glob('*cat.radec') radec = parent_radec best_overlap = 0 fp = direct['footprint'] for rdfile in radec_files: if os.path.exists(rdfile.replace('cat.radec', 'wcs_failed')): continue points = np.loadtxt(rdfile) try: hull = ConvexHull(points) except: continue rd_fp = Polygon(points[hull.vertices, :]) olap = rd_fp.intersection(fp) if (olap.area > min_overlap*fp.area) & (olap.area > best_overlap): radec = rdfile best_overlap = olap.area if use_first_radec: master_radec = radec print('\n\n\n{0} radec: {1}\n\n\n'.format(direct['product'], radec)) ########################### # Preprocessing script, background subtraction, etc. status = prep.process_direct_grism_visit(direct=direct, grism=grism, radec=radec, skip_direct=False, **visit_prep_args) ################################### # Persistence Masking for file in direct['files']+grism['files']: print(file) pfile = os.path.join(PERSIST_PATH, file.replace('_flt', '_persist')) if os.path.exists(pfile): prep.apply_persistence_mask(file, path=PERSIST_PATH, **persistence_args) # Fix NaNs utils.fix_flt_nan(file, verbose=True) # From here, `radec` will be the radec file from the first grism visit #master_radec = radec if skip_imaging: return True # Ancillary visits imaging_visits = [] for visit in visits: filt = visit['product'].split('-')[-1] if (len(glob.glob(visit['product']+'_dr?_sci.fits')) == 0) & (not filt.startswith('g1')): imaging_visits.append(visit) # Run preprocessing in order of decreasing filter wavelength filters = [] for v in visits: vspl = v['product'].split('-') if (vspl[-1] == 'clear') | (vspl[-1][:-1] in ['grism','gr150']): fi = vspl[-2] if fi.endswith('w2'): fi = fi[:-1] if fi[1] in '0': filt = 'f0' + fi[1:] elif fi[1] > '1': filt = fi[:-1] + '0w' else: filt = fi filters.append(filt) else: filters.append(vspl[-1]) fwave = np.asarray([f.replace('f1', 'f10'). \ replace('f098m', 'f0980m'). \ replace('lp', 'w'). \ replace('gr','g'). \ replace('grism','g410'). \ replace('fq', 'f')[1:-1] for f in filters],dtype=float) if len(np.unique(fwave)) > 1: sort_idx = np.argsort(fwave)[::-1] else: sort_idx = np.arange(len(fwave), dtype=int) for i in sort_idx: direct = visits[i] if 'g800l' in direct['product']: continue # Skip singleton optical visits if (fwave[i] < 900) & (len(direct['files']) == 1): if skip_single_optical_visits: print('Only one exposure, skip', direct['product']) continue if len(glob.glob(direct['product']+'_dr?_sci.fits')) > 0: print('Skip', direct['product']) continue else: print(direct['product']) # if master_radec is not None: # radec = master_radec # best_overlap = 0 # fp = direct['footprint'] radec = None if master_radec is not None: radec = master_radec best_overlap = 0. if master_radec == 'astrometry_db': radec = prep.get_visit_radec_from_database(direct) # if radec is None: # master_radec = None if radec is not None: fp = direct['footprint'] else: if radec is not None: fp = direct['footprint'] if radec is None: radec_files = glob.glob('*cat.radec') radec = parent_radec best_overlap = 0 radec_n = 0 fp = direct['footprint'] for rdfile in radec_files: points = np.loadtxt(rdfile) hull = ConvexHull(points) rd_fp = Polygon(points[hull.vertices, :]) olap = rd_fp.intersection(fp) if (olap.area > min_overlap*fp.area) & (olap.area > best_overlap) & (len(points) > 0.2*radec_n): radec = rdfile best_overlap = olap.area radec_n = len(points) print('\n\n\n{0} radec: {1} ({2:.2f})\n\n\n'.format(direct['product'], radec, best_overlap/fp.area)) try: try: status = prep.process_direct_grism_visit(direct=direct, grism={}, radec=radec, skip_direct=False, **visit_prep_args) except: utils.log_exception(utils.LOGFILE, traceback) utils.log_comment(utils.LOGFILE, "# !! First `prep` run failed with `run_tweak_align`. Try again") if 'run_tweak_align' in visit_prep_args: visit_prep_args['run_tweak_align'] = False status = prep.process_direct_grism_visit(direct=direct, grism={}, radec=radec, skip_direct=False, **visit_prep_args) failed_file = '%s.failed' % (direct['product']) if os.path.exists(failed_file): os.remove(failed_file) ################################### # Persistence Masking for file in direct['files']: print(file) pfile = os.path.join(PERSIST_PATH, file.replace('_flt', '_persist')) if os.path.exists(pfile): prep.apply_persistence_mask(file, path=PERSIST_PATH, **persistence_args) # Fix NaNs utils.fix_flt_nan(file, verbose=True) except: fp = open('%s.failed' % (direct['product']), 'w') fp.write('\n') fp.close() ################################### # WFC3/IR Satellite trails if False: from mywfc3.satdet import _detsat_one wfc3 = (info['INSTRUME'] == 'WFC3') & (info['DETECTOR'] == 'IR') for file in info['FILE'][wfc3]: print(file) mask = _detsat_one(file, update=False, ds9=None, plot=False, verbose=True) ################################### # Clean up if clean: clean_prep(field_root=field_root)
[docs]def mask_IR_psf_spikes(visit={}, mag_lim=17, cat=None, cols=['mag_auto', 'ra', 'dec'], minR=8, dy=5, selection=None, length_scale=1, dq_bit=2048): """ Mask 45-degree diffraction spikes around bright stars for WFC3/IR Parameters ---------- minR : float Mask spike pixels > minR from the star centers dy : int Mask spike pixels +/- `dy` pixels from the computed center of a spike. selection : bool array If None, then compute `mag < mag_auto` from `cat`. Otherwise if supplied, use as the selection mask. length_scale : float Scale length of the spike mask by this factor. The default spike mask length in pixels is >>> # m = star AB magnitude >>> mask_len = 4*np.sqrt(10**(-0.4*(np.minimum(m,17)-17)))/0.06 Returns ------- None : None Updates exposure files in place """ from scipy.interpolate import griddata if cat is None: cat = utils.read_catalog('{0}.cat.fits'.format(visit['product'])) try: mag, ra, dec = cat[cols[0]], cat[cols[1]], cat[cols[2]] except: mag, ra, dec = cat['MAG_AUTO'], cat['X_WORLD'], cat['Y_WORLD'] if selection is None: selection = mag < 17 for file in visit['files']: if not os.path.exists(file): print('Mask diffraction spikes (skip file {0})'.format(file)) continue im = pyfits.open(file, mode='update') print('Mask diffraction spikes ({0}), N={1} objects'.format(file, selection.sum())) for ext in [1, 2, 3, 4]: if ('SCI', ext) not in im: break wcs = pywcs.WCS(im['SCI', ext].header, fobj=im) try: cd = wcs.wcs.cd except: cd = wcs.wcs.pc footp = utils.WCSFootprint(wcs) points = np.array([ra, dec]).T selection &= footp.path.contains_points(points) if selection.sum() == 0: continue sh = im['SCI', ext].data.shape mask = np.zeros(sh, dtype=int) iy, ix = np.indices(sh) # Spider angles, by hand! thetas = np.array([[1.07000000e+02, 1.07000000e+02, -8.48089636e-01, 8.46172810e-01], [3.07000000e+02, 1.07000000e+02, -8.48252315e-01, 8.40896646e-01], [5.07000000e+02, 1.07000000e+02, -8.42360089e-01, 8.38631568e-01], [7.07000000e+02, 1.07000000e+02, -8.43990233e-01, 8.36766818e-01], [9.07000000e+02, 1.07000000e+02, -8.37264191e-01, 8.31481992e-01], [1.07000000e+02, 3.07000000e+02, -8.49196752e-01, 8.47137753e-01], [3.07000000e+02, 3.07000000e+02, -8.46919396e-01, 8.43697746e-01], [5.07000000e+02, 3.07000000e+02, -8.43849045e-01, 8.39136104e-01], [7.07000000e+02, 3.07000000e+02, -8.40070025e-01, 8.36362299e-01], [9.07000000e+02, 3.07000000e+02, -8.35218388e-01, 8.34258999e-01], [1.07000000e+02, 5.07000000e+02, -8.48708154e-01, 8.48377823e-01], [3.07000000e+02, 5.07000000e+02, -8.45874787e-01, 8.38512574e-01], [5.07000000e+02, 5.07000000e+02, -8.37238493e-01, 8.42544142e-01], [7.07000000e+02, 5.07000000e+02, -8.26696970e-01, 8.37981214e-01], [9.07000000e+02, 5.07000000e+02, -8.29422567e-01, 8.32182726e-01], [1.07000000e+02, 7.07000000e+02, -8.42331487e-01, 8.43417815e-01], [3.07000000e+02, 7.07000000e+02, -8.40006233e-01, 8.48355643e-01], [5.07000000e+02, 7.07000000e+02, -8.39776844e-01, 8.48106508e-01], [7.07000000e+02, 7.07000000e+02, -8.38620315e-01, 8.40031240e-01], [9.07000000e+02, 7.07000000e+02, -8.28351652e-01, 8.31933185e-01], [1.07000000e+02, 9.07000000e+02, -8.40726238e-01, 8.51621083e-01], [3.07000000e+02, 9.07000000e+02, -8.36006159e-01, 8.46746171e-01], [5.07000000e+02, 9.07000000e+02, -8.35987878e-01, 8.48932633e-01], [7.07000000e+02, 9.07000000e+02, -8.34104095e-01, 8.46009851e-01], [9.07000000e+02, 9.07000000e+02, -8.32700159e-01, 8.38512715e-01]]) thetas[thetas == 107] = 0 thetas[thetas == 907] = 1014 xy = np.array(wcs.all_world2pix(ra[selection], dec[selection], 0)).T t0 = griddata(thetas[:, :2], thetas[:, 2], xy, method='linear', fill_value=np.mean(thetas[:, 2])) t1 = griddata(thetas[:, :2], thetas[:, 3], xy, method='linear', fill_value=np.mean(thetas[:, 3])) for i, m in enumerate(mag[selection]): # Size that depends on magnitude xlen = 4*np.sqrt(10**(-0.4*(np.minimum(m, 17)-17)))/0.06 xlen *= length_scale x = np.arange(-xlen, xlen, 0.05) xx = np.array([x, x*0.]) for t in [t0[i], t1[i]]: _mat = np.array([[np.cos(t), -np.sin(t)], [np.sin(t), np.cos(t)]]) xr = _mat.dot(xx).T x = xr+xy[i, :] xp = np.asarray(np.round(x),dtype=int) #plt.plot(xp[:,0], xp[:,1], color='pink', alpha=0.3, linewidth=5) for j in range(-dy, dy+1): ok = (xp[:, 1]+j >= 0) & (xp[:, 1]+j < sh[0]) ok &= (xp[:, 0] >= 0) & (xp[:, 0] < sh[1]) ok &= np.abs(xp[:, 1]+j - xy[i, 1]) > minR ok &= np.abs(xp[:, 0] - xy[i, 0]) > minR mask[xp[ok, 1]+j, xp[ok, 0]] = 1 im['DQ', ext].data |= mask*dq_bit im.flush()
[docs]def multiband_catalog(field_root='j142724+334246', threshold=1.8, detection_background=True, photometry_background=True, get_all_filters=False, filters=None, det_err_scale=-np.inf, phot_err_scale=-np.inf, rescale_weight=True, run_detection=True, detection_filter='ir', detection_root=None, output_root=None, use_psf_filter=True, detection_params=prep.SEP_DETECT_PARAMS, phot_apertures=prep.SEXTRACTOR_PHOT_APERTURES_ARCSEC, master_catalog=None, bkg_mask=None, bkg_params={'bw': 64, 'bh': 64, 'fw': 3, 'fh': 3, 'pixel_scale': 0.06}, use_bkg_err=False, aper_segmask=True, sci_image=None, prefer_var_image=True, clean_bkg=True): """ Make a detection catalog and run aperture photometry on all available filter images with the SourceExtractor clone `~sep`. Parameters ---------- field_root : str Rootname of detection images and individual filter images (and weights). threshold : float Detection threshold, see `~grizli.prep.make_SEP_catalog`. detection_background : bool Background subtraction on detection image, see `get_background` on `~grizli.prep.make_SEP_catalog`. photometry_background : bool Background subtraction when doing photometry on filter images, see `get_background` on `~grizli.prep.make_SEP_catalog`. get_all_filters : bool Find all filter images available for `field_root` filters : list, None Explicit list of filters to include, rather than all available det_err_scale : float Uncertainty scaling for detection image, see `err_scale` on `~grizli.prep.make_SEP_catalog`. phot_err_scale : float Uncertainty scaling for filter images, see `err_scale` on `~grizli.prep.make_SEP_catalog`. rescale_weight : bool Rescale the weight images based on `sep.Background.rms` for both detection and filter images, see `grizli.prep.make_SEP_catalog`. run_detection : bool Run the source detection. Can be False if the detection catalog file (`master_catalog`) and segmentation image (``{field_root}-{detection_filter}_seg.fits``) already exist, i.e., from a separate call to `~grizli.prep.make_SEP_catalog`. detection_filter : str Filter image to use for the source detection. The default ``ir`` is the product of `grizli.pipeline.auto_script.make_filter_combinations`. The detection image filename will be ``{field_root}-{detection_filter}_drz_sci.fits`` and with associated weight image ``{field_root}-{detection_filter}_drz_wht.fits``. detection_root : str, None Alternative rootname to use for the detection (and weight) image, i.e., ``{detection_root}_drz_sci.fits``. Note that the ``_drz_sci.fits`` suffixes are currently required by `~grizli.prep.make_SEP_catalog`. output_root : str, None Rootname of the output catalog file to use, if desired other than `field_root`. use_psf_filter : bool For HST, try to use the PSF as the convolution filter for source detection detection_params : dict Source detection parameters, see `~grizli.prep.make_SEP_catalog`. Many of these are analogous to SourceExtractor parameters. phot_apertures : list Aperture *diameters*. If provided as a string, then apertures assumed to be in pixel units. Can also provide a list of elements with astropy.unit attributes, which are converted to pixels given the image WCS/pixel size. See `~grizli.prep.make_SEP_catalog`. master_catalog : str, None Filename of the detection catalog, if None then build as ``{field_root}-{detection_filter}.cat.fits`` bkg_mask : array-like, None Mask to use for the detection and photometry background determination, see `~grizli.prep.make_SEP_catalog`. This has to be the same dimensions as the images themselves. bkg_params : dict Background parameters, analogous to SourceExtractor, see `~grizli.prep.make_SEP_catalog`. use_bkg_err : bool Use the background rms array determined by `sep` for the uncertainties (see `sep.Background.rms`). aper_segmask : bool Use segmentation masking for the aperture photometry, see `~grizli.prep.make_SEP_catalog`. sci_image : array-like, None Array itself to use for source detection, see `~grizli.prep.make_SEP_catalog`. prefer_var_image : bool If found, use ``_var.fits`` image for the full variance that includes the Poisson component Returns ------- tab : `~astropy.table.Table` Catalog with detection parameters and aperture photometry. This is essentially the same as the output for `~grizli.prep.make_SEP_catalog` but with separate photometry columns for each multi-wavelength filter image found. """ try: from .. import prep, utils frame = inspect.currentframe() utils.log_function_arguments(utils.LOGFILE, frame, 'auto_script.multiband_catalog') except: from grizli import prep, utils # Make catalog if master_catalog is None: master_catalog = '{0}-{1}.cat.fits'.format(field_root, detection_filter) else: if not os.path.exists(master_catalog): print('Master catalog {0} not found'.format(master_catalog)) return False if not os.path.exists(master_catalog): run_detection = True if detection_root is None: detection_root = '{0}-{1}'.format(field_root, detection_filter) if output_root is None: output_root = field_root if run_detection: if use_psf_filter: psf_files = glob.glob('{0}*psf.fits'.format(field_root)) if len(psf_files) > 0: psf_files.sort() psf_im = pyfits.open(psf_files[-1]) msg = '# Generate PSF kernel from {0}\n'.format(psf_files[-1]) utils.log_comment(utils.LOGFILE, msg, verbose=True) sh = psf_im['PSF', 'DRIZ1'].data.shape # Cut out center of PSF skip = (sh[0]-1-11)//2 psf = psf_im['PSF', 'DRIZ1'].data[skip:-1-skip, skip:-1-skip]*1 # Optimal filter is reversed PSF (i.e., PSF cross-correlation) # https://arxiv.org/pdf/1512.06872.pdf psf_kernel = psf[::-1, :][:, ::-1] psf_kernel /= psf_kernel.sum() detection_params['filter_kernel'] = psf_kernel tab = prep.make_SEP_catalog( sci=sci_image, root=detection_root, threshold=threshold, get_background=detection_background, save_to_fits=True, rescale_weight=rescale_weight, err_scale=det_err_scale, phot_apertures=phot_apertures, detection_params=detection_params, bkg_mask=bkg_mask, bkg_params=bkg_params, use_bkg_err=use_bkg_err, aper_segmask=aper_segmask, prefer_var_image=prefer_var_image, ) cat_pixel_scale = tab.meta['asec_0'][0]/tab.meta['aper_0'][0] else: tab = utils.GTable.gread(master_catalog) cat_pixel_scale = tab.meta['ASEC_0']/tab.meta['APER_0'] # Source positions #source_xy = tab['X_IMAGE'], tab['Y_IMAGE'] if aper_segmask: seg_data = pyfits.open('{0}_seg.fits'.format(detection_root))[0].data seg_data = np.asarray(seg_data,dtype=np.int32) aseg, aseg_id = seg_data, tab['NUMBER'] source_xy = tab['X_WORLD'], tab['Y_WORLD'], aseg, aseg_id aseg_half = None else: source_xy = tab['X_WORLD'], tab['Y_WORLD'] if filters is None: #visits_file = '{0}_visits.yaml'.format(field_root) visits_file = find_visit_file(root=field_root) if visits_file is None: get_all_filters = True if get_all_filters: mq = '{0}-f*dr?_sci.fits*' mq = mq.format(field_root.replace('-100mas','-*mas')) mosaic_files = glob.glob(mq) mq = '{0}-clear*dr?_sci.fits*' mq = mq.format(field_root.replace('-100mas','-*mas')) mosaic_files += glob.glob(mq) mosaic_files.sort() filters = [file.split('_')[-3][len(field_root)+1:] for file in mosaic_files] else: visits, all_groups, info = load_visit_info( field_root, verbose=False ) if ONLY_F814W: info = info[((info['INSTRUME'] == 'WFC3') & (info['DETECTOR'] == 'IR')) | (info['FILTER'] == 'F814W')] # UVIS info_filters = [f for f in info['FILTER']] for i in range(len(info)): file_i = info['FILE'][i] if file_i.startswith('i') & ('_flc' in file_i): info_filters[i] += 'U' info['FILTER'] = info_filters filters = [f.lower() for f in np.unique(info['FILTER'])] #filters.insert(0, 'ir') #segment_img = pyfits.open('{0}-ir_seg.fits'.format(field_root))[0].data fq = '{0}-{1}_dr?_sci.fits*' for ii, filt in enumerate(filters): print(filt) if filt.startswith('g'): continue if filt not in ['g102', 'g141', 'g800l']: _fstr = fq.format(field_root.replace('-100mas','-*mas'), filt) sci_files = glob.glob(_fstr) if len(sci_files) == 0: continue root = sci_files[0].split('{0}_dr'.format(filt))[0]+filt # root = '{0}-{1}'.format(field_root, filt) # Check for half-pixel optical images if using segmask if aper_segmask: sci = pyfits.open(sci_files[0]) sci_shape = sci[0].data.shape sci.close() del(sci) if sci_shape[0] != aseg.shape[0]: msg = '# filt={0}, need half-size segmentation image' msg += ', shapes sci:{1} seg:{2}' print(msg.format(filt, sci_shape, aseg.shape)) if aseg_half is None: aseg_half = np.zeros(sci_shape, dtype=aseg.dtype) for i in [0, 1]: for j in [0, 1]: aseg_half[i::2, j::2] += aseg source_xy = (tab['X_WORLD'], tab['Y_WORLD'], aseg_half, aseg_id) else: source_xy = (tab['X_WORLD'], tab['Y_WORLD'], aseg, aseg_id) filter_tab = prep.make_SEP_catalog( root=root, threshold=threshold, rescale_weight=rescale_weight, err_scale=phot_err_scale, get_background=photometry_background, save_to_fits=False, source_xy=source_xy, phot_apertures=phot_apertures, bkg_mask=bkg_mask, bkg_params=bkg_params, use_bkg_err=use_bkg_err, sci=sci_image, prefer_var_image=prefer_var_image, ) for k in filter_tab.meta: newk = '{0}_{1}'.format(filt.upper(), k) newk = newk.replace('-CLEAR','') tab.meta[newk] = filter_tab.meta[k] for c in filter_tab.colnames: newc = '{0}_{1}'.format(filt.upper(), c) newc = newc.replace('-CLEAR','') tab[newc] = filter_tab[c] # Kron total correction from EE newk = '{0}_PLAM'.format(filt.upper()) newk = newk.replace('-CLEAR','') filt_plam = tab.meta[newk] tot_corr = prep.get_kron_tot_corr( tab, filt.lower(), pixel_scale=cat_pixel_scale, photplam=filt_plam ) #ee_corr = prep.get_kron_tot_corr(tab, filter=filt.lower()) tab['{0}_tot_corr'.format(filt.upper().replace('-CLEAR',''))] = tot_corr if clean_bkg: bkg_files = glob.glob(f'{root}*{filt}*bkg.fits') for bfile in bkg_files: print('# rm {bfile}') os.remove(bfile) else: continue for c in tab.colnames: tab.rename_column(c, c.lower()) idcol = utils.GTable.Column(data=tab['number'], name='id') tab.add_column(idcol, index=0) tab.write('{0}_phot.fits'.format(output_root), format='fits', overwrite=True) return tab
[docs]def count_grism_exposures(phot, groups, grisms=['g800l', 'g102', 'g141', 'gr150c', 'gr150r'], reset=True, verbose=False): """ Count number of grism exposures that contain objects in a catalog """ from matplotlib.path import Path points = np.array([phot['ra'], phot['dec']]).T for g in grisms: if ('nexp_'+g not in phot.colnames) | reset: phot['nexp_'+g] = np.zeros(len(phot), dtype=np.int32) for ig, g in enumerate(groups): gri = g['grism']['product'].split('-')[-1] if gri not in grisms: continue if verbose: print('{0:<4} {1:48} {2}'.format(ig, g['grism']['product'], gri)) for fp in g['grism']['footprints']: hull = Path(np.array(fp.convex_hull.boundary.xy).T) phot['nexp_'+gri] += hull.contains_points(points)*1 phot['has_grism'] = (phot['nexp_'+grisms[0]] > 0).astype(np.uint8) if len(grisms) > 1: for ig, g in enumerate(grisms): phot['has_grism'] |= (phot['nexp_'+g] > 0).astype(np.uint8)*2**ig phot.meta[g+'bit'] = 2**ig return phot
[docs]def photutils_catalog(field_root='j142724+334246', threshold=1.8, subtract_bkg=True): """ Make a detection catalog with SourceExtractor and then measure photometry with `~photutils`. [deprecated, use `~grizli.pipeline.auto_script.multiband_catalog`.] """ from photutils import segmentation, background import photutils.utils import warnings warnings.warn('photutils_catalog is deprecated, use ``sep`` catalog ' 'in multiband_catalog') try: from .. import prep, utils except: from grizli import prep, utils # Photutils catalog #overlaps = np.load('{0}_overlaps.npy'.format(field_root))[0] # Make catalog sexcat = prep.make_drz_catalog(root='{0}-ir'.format(field_root), threshold=threshold, extra_config=prep.SEXTRACTOR_CONFIG_3DHST) #sexcat = prep.make_SEP_catalog(root='{0}-ir'.format(field_root), threshold=threshold, extra_config=prep.SEXTRACTOR_CONFIG_3DHST) for c in sexcat.colnames: sexcat.rename_column(c, c.lower()) sexcat = sexcat['number', 'mag_auto', 'flux_radius'] files = glob.glob('../RAW/*fl[tc].fits') info = utils.get_flt_info(files) if ONLY_F814W: info = info[((info['INSTRUME'] == 'WFC3') & (info['DETECTOR'] == 'IR')) | (info['FILTER'] == 'F814W')] filters = [f.lower() for f in np.unique(info['FILTER'])] filters.insert(0, 'ir') segment_img = pyfits.open('{0}-ir_seg.fits'.format(field_root))[0].data for ii, filt in enumerate(filters): print(filt) if filt.startswith('g'): continue if filt not in ['g102', 'g141']: sci_files = glob.glob(('{0}-{1}_dr?_sci.fits'.format(field_root, filt))) if len(sci_files) == 0: continue else: sci_file = sci_files[0] sci = pyfits.open(sci_file) wht = pyfits.open(sci_file.replace('_sci', '_wht')) else: continue photflam = sci[0].header['PHOTFLAM'] ABZP = (-2.5*np.log10(sci[0].header['PHOTFLAM']) - 21.10 - 5*np.log10(sci[0].header['PHOTPLAM']) + 18.6921) bkg_err = 1/np.sqrt(wht[0].data) bkg_err[~np.isfinite(bkg_err)] = 0 # 1e30 total_error = photutils.utils.calc_total_error(sci[0].data, bkg_err, sci[0].header['EXPTIME']) wht_mask = (wht[0].data == 0) | (sci[0].data == 0) sci[0].data[wht[0].data == 0] = 0 mask = None # bkg_err > 1.e29 ok = wht[0].data > 0 if ok.sum() == 0: print(' No valid pixels') continue if subtract_bkg: try: bkg = background.Background2D(sci[0].data, 100, mask=wht_mask | (segment_img > 0), filter_size=(3, 3), filter_threshold=None, edge_method='pad') bkg_obj = bkg.background except: bkg_obj = None utils.log_exception(utils.LOGFILE, traceback) utils.log_comment(utils.LOGFILE, "# !! Couldn't make bkg_obj") else: bkg_obj = None cat = segmentation.source_properties(sci[0].data, segment_img, error=total_error, mask=mask, background=bkg_obj, filter_kernel=None, wcs=pywcs.WCS(sci[0].header), labels=None) if filt == 'ir': cols = ['id', 'xcentroid', 'ycentroid', 'sky_centroid', 'sky_centroid_icrs', 'source_sum', 'source_sum_err', 'xmin', 'xmax', 'ymin', 'ymax', 'min_value', 'max_value', 'minval_xpos', 'minval_ypos', 'maxval_xpos', 'maxval_ypos', 'area', 'equivalent_radius', 'perimeter', 'semimajor_axis_sigma', 'semiminor_axis_sigma', 'eccentricity', 'orientation', 'ellipticity', 'elongation', 'covar_sigx2', 'covar_sigxy', 'covar_sigy2', 'cxx', 'cxy', 'cyy'] tab = utils.GTable(cat.to_table(columns=cols)) cols = ['source_sum', 'source_sum_err'] for c in cols: tab[c.replace('sum', 'flam')] = tab[c]*photflam else: cols = ['source_sum', 'source_sum_err'] t_i = cat.to_table(columns=cols) mask = (np.isfinite(t_i['source_sum_err'])) for c in cols: tab['{0}_{1}'.format(filt, c)] = t_i[c] tab['{0}_{1}'.format(filt, c)][~mask] = np.nan cflam = c.replace('sum', 'flam') tab['{0}_{1}'.format(filt, cflam)] = t_i[c]*photflam tab['{0}_{1}'.format(filt, cflam)][~mask] = np.nan tab.meta['PW{0}'.format(filt.upper())] = sci[0].header['PHOTPLAM'] tab.meta['ZP{0}'.format(filt.upper())] = ABZP tab.meta['FL{0}'.format(filt.upper())] = sci[0].header['PHOTFLAM'] icrs = [(coo.ra.value, coo.dec.value) for coo in tab['sky_centroid_icrs']] tab['ra'] = [coo[0] for coo in icrs] tab['dec'] = [coo[1] for coo in icrs] tab.remove_column('sky_centroid_icrs') tab.remove_column('sky_centroid') tab.write('{0}_phot.fits'.format(field_root), format='fits', overwrite=True) return tab
[docs]def load_GroupFLT(field_root='j142724+334246', PREP_PATH='../Prep', force_ref=None, force_seg=None, force_cat=None, galfit=False, pad=(64,256), files=None, gris_ref_filters=GRIS_REF_FILTERS, split_by_grism=False, use_jwst_crds=False): """ Initialize a GroupFLT object from exposures in a working directory. The script tries to match mosaic images with grism exposures based on the filter combinations listed in `gris_ref_filters` Parameters ---------- field_root : str Rootname of catalog and imaging mosaics, e.g., ``'{field_root}-ir.cat.fits'``, ``'{field_root}-f160w_drz_sci.fits'``. PREP_PATH : str Path to search for the files force_ref : str, 'clean', 'model' Force filename of the reference image. force_seg : str Force filename of segmentation image force_cat : str Force filename of photometric catalog galfit : bool Not used recently pad : (int, int) zero padding to catch spectra that partially fall of the edges of the detector files : list, None Explicit list of grism exposures. Otherwise will be all ``flt, flc, rate`` files in working directory gris_ref_filters : dict Associated reference images for particular grism elements split_by_grism : bool Separate models by grism element use_jwst_crds : bool Use CRDS `specwcs` files for JWST grism trace configuration Returns ------- grp : `~grizli.multifit.GroupFLT` or a list of them `~grizli.multifit.GroupFLT` object[s] """ import glob import os import numpy as np from .. import prep, utils, multifit if files is None: files = glob.glob(os.path.join(PREP_PATH, '*fl[tc].fits')) files += glob.glob(os.path.join(PREP_PATH, '*rate.fits')) files.sort() info = utils.get_flt_info(files) for idx, filter in enumerate(info['FILTER']): if '-' in filter: spl = filter.split('-') info['FILTER'][idx] = spl[-1] if len(spl) in [2,3]: info['PUPIL'][idx] = filter.split('-')[-2] masks = {} for gr in ['G141', 'G102', 'G800L']: masks[gr.lower()] = [info['FILTER'] == gr, gr, ''] ## NIRISS for gr in ['GR150R', 'GR150C']: for filt in ['F090W', 'F115W', 'F150W', 'F200W']: #key = f'{gr.lower()}-{filt.lower()}' # key = filt.lower() key = filt.lower() + 'n-clear' if key in masks: masks[key][0] |= ((info['PUPIL'] == filt) & (info['FILTER'] == gr)) else: masks[key] = [(info['PUPIL'] == filt) & (info['FILTER'] == gr), gr, filt] # for gr in ['GR150R', 'GR150C']: # for filt in ['F090W', 'F115W', 'F150W', 'F200W']: # key = f'{gr.lower()}-{filt.lower()}' # masks[key] = [(info['PUPIL'] == filt) & (info['FILTER'] == gr), # gr, filt] # NIRCam for ig, gr in enumerate(['GRISMR','GRISMC']): for filt in ['F277W', 'F356W', 'F444W', 'F300M','F335M','F360M','F410M','F430M','F460M','F480M']: #key = f'{gr.lower()}-{filt.lower()}' key = filt.lower() + '-clear' if key in masks: masks[key][0] |= ((info['PUPIL'] == filt) & (info['FILTER'] == gr)) else: masks[key] = [((info['PUPIL'] == filt) & (info['FILTER'] == gr)), gr, filt] # has_nircam = False # for gr in ['GRISMR','GRISMC']: # for filt in ['F277W', 'F356W', 'F410M', 'F444W']: # key = f'{gr.lower()}-{filt.lower()}' # masks[key] = [(info['PUPIL'] == filt) & (info['FILTER'] == gr), # gr, filt] # has_nircam |= masks[key][0].sum() > 0 if force_cat is None: #catalog = '{0}-ir.cat.fits'.format(field_root) catalog = glob.glob('{0}-ir.cat.fits'.format(field_root))[0] else: catalog = force_cat grp_objects = [] grp = None for key in masks: if (masks[key][0].sum() > 0) & (masks[key][1] in gris_ref_filters): if masks[key][2] != '': ref = key #masks[mask][2] else: for f in gris_ref_filters[masks[key][1]]: _fstr = '{0}-{1}_drz_sci.fits' if os.path.exists(_fstr.format(field_root, f.lower())): ref = f break else: continue # Segmentation image if force_seg is None: if galfit == 'clean': _fstr = '{0}-{1}_galfit_orig_seg.fits' seg_file = _fstr.format(field_root,ref.lower()) elif galfit == 'model': _fstr = '{0}-{1}_galfit_seg.fits' seg_file = _fstr.format(field_root, ref.lower()) else: _fstr = '{0}-*_seg.fits' seg_files = glob.glob(_fstr.format(field_root)) # Log that no file is found if len(seg_files) == 0: msg = f"auto_script.grism_prep: no segmentation image found for {key}" msg += "\nThis can be set manually with `force_seg`" utils.log_comment(utils.LOGFILE, msg, verbose=True) seg_file = seg_files[0] else: seg_file = force_seg # Reference image if force_ref is None: if galfit == 'clean': _fstr = '{0}-{1}_galfit_clean.fits' ref_file = _fstr.format(field_root, ref.lower()) elif galfit == 'model': _fstr = '{0}-{1}_galfit.fits' ref_file = _fstr.format(field_root, ref.lower()) else: _fstr = '{0}-{1}_dr*_sci.fits*' ref_files = glob.glob(_fstr.format(field_root, ref.lower())) # Log that no file is found if len(ref_files) == 0: msg = f"auto_script.grism_prep: no reference image found for {key}" msg += "\nThis can be set manually with `force_ref`" utils.log_comment(utils.LOGFILE, msg, verbose=True) ref_file = ref_files[0] else: ref_file = force_ref _grism_files=list(info['FILE'][masks[key][0]]) if masks[key][1].startswith('GRISM'): # NIRCAM if 'F444W' in masks[key][2].upper(): polyx = [2.1, 5.5, 4.4] elif 'F410M' in masks[key][2].upper(): polyx = [2.1, 5.5, 4.1] elif 'F356W' in masks[key][2].upper(): polyx = [2.1, 5.5, 3.6] elif 'F277W' in masks[key][2].upper(): polyx = [2.1, 5.5, 2.8] else: polyx = [2.1, 5.5, 3.6] elif masks[key][1].startswith('GR150'): # NIRISS polyx = [0.6, 2.5] else: # HST polyx = [0.3, 1.8] msg = f"auto_script.grism_prep: group = {key}" msg += f"\nauto_script.grism_prep: N = {len(_grism_files)}" for _i, _f in enumerate(_grism_files): msg += f'\nauto_script.grism_prep: file {_i} = {_f}' msg += f'\nauto_script.grism_prep: ref_file = {ref_file}' msg += f'\nauto_script.grism_prep: seg_file = {seg_file}' msg += f'\nauto_script.grism_prep: catalog = {catalog}' msg += f'\nauto_script.grism_prep: polyx = {polyx}' msg += f'\nauto_script.grism_prep: pad = {pad}' utils.log_comment(utils.LOGFILE, msg, verbose=True) grp_i = multifit.GroupFLT(grism_files=_grism_files, direct_files=[], ref_file=ref_file, seg_file=seg_file, catalog=catalog, cpu_count=-1, sci_extn=1, pad=pad, polyx=polyx, use_jwst_crds=use_jwst_crds) grp_objects.append(grp_i) if split_by_grism: return grp_objects else: grp = grp_objects[0] if len(grp_objects) > 0: for i in range(1, len(grp_objects)): grp.extend(grp_objects[i]) del(grp_objects[i]) return [grp]
[docs]def grism_prep(field_root='j142724+334246', PREP_PATH='../Prep', EXTRACT_PATH='../Extractions', ds9=None, refine_niter=3, gris_ref_filters=GRIS_REF_FILTERS, force_ref=None, files=None, split_by_grism=True, refine_poly_order=1, refine_fcontam=0.5, cpu_count=0, mask_mosaic_edges=False, prelim_mag_limit=25, refine_mag_limits=[18, 24], init_coeffs=[1.1, -0.5], grisms_to_process=None, pad=(64, 256), model_kwargs={'compute_size': True}, sep_background_kwargs=None, subtract_median_filter=False, median_filter_size=71, median_filter_central=10, second_pass_filtering=False, box_filter_sn=3, box_filter_width=3, median_mask_sn_threshold=None, median_mask_dilate=8, prelim_model_for_median=False, use_jwst_crds=False): """ Contamination model pipeline for grism exposures Parameters ---------- field_root : str Rootname of the associated data, used to define the direct image, catalog filenames PREP_PATH : str Relative path to the "Prep" directory containing the grism exposures EXTRACT_PATH : str Relative path to the "Extractions" directory where the outputs will be copied ds9 : `~grizli.ds9.DS9`, None If an open `DS9` window, will display contamination model as it's calcluated refine_niter : int Number of refinement iterations with the polynomial continuum models gris_ref_filters : dict Associated reference images for particular grism elements force_ref : str, None Explicitly specify the direct image reference. Otherwise will be calculated with ``field_root``, ``gris_ref_filters``. files : list, None Explicit list of grism exposures. Otherwise will be all ``flt, flc, rate`` files in the working directory. split_by_grism : bool Separate models by grism element refine_poly_order : int Polynomial order fit to the refined spectra refine_fcontam : float Factor multiplying the contamination model that is added to the variance of and extracted spectrum. cpu_count : int Multiprocessing, see `~grizli.multifit.GroupFLT.compute_full_model`. mask_mosaic_edges : bool Apply a mask where the specified direct image might not contribute to the dispersed image and therefore could have unmodeled first-order contamination spectra prelim_mag_limit : float Faint magnitude limit for sources in the simple contamination model refine_mag_limits : [float, float] Range of magnitudes for objects in the refined contamination model init_coeffs : [float, float] Polynomial coefficients for the first simple model grisms_to_process : list, None Explicit list of grisms to process, otherwise will do all that are found pad : (int, int) Zero padding size for spectra that fall off the edge of the detector model_kwargs : dict Keyword arguments to pass to `~grizli.multifit.GroupFLT.compute_full_model` sep_background_kwargs=None subtract_median_filter : bool Row-based median filter for NIRCam grisms median_filter_size : int Median filter size, pixels median_filter_central : int Gap in middle of median filter to avoid self-subtraction of lines second_pass_filtering : bool Two passes of median filter to further remove self subtraction box_filter_sn : float S/N threshold for second-pass median filter box_filter_width : int Size of spatial filter for second-pass median filter median_mask_sn_threshold : float S/N threshold for median filter median_mask_dilate : int Dilation factor for median filter prelim_model_for_median : bool Compute a contamination model of bright sources before calculating the median fitler use_jwst_crds : bool Use CRDS `specwcs` files for JWST grism trace configuration Returns ------- grp : `~grizli.multifit.GroupFLT` Group object with information for all separate exposures """ import glob import os import numpy as np import scipy.stats try: from .. import prep, utils, multifit frame = inspect.currentframe() utils.log_function_arguments(utils.LOGFILE, frame, 'auto_script.grism_prep') except: from grizli import prep, utils, multifit if grisms_to_process is not None: for g in gris_ref_filters.copy(): if g not in grisms_to_process: pg = gris_ref_filters.pop(g) grp_objects = load_GroupFLT(field_root=field_root, PREP_PATH=PREP_PATH, gris_ref_filters=gris_ref_filters, files=files, split_by_grism=split_by_grism, force_ref=force_ref, pad=pad, use_jwst_crds=use_jwst_crds) for grp in grp_objects: if subtract_median_filter: ################ # Compute preliminary model before median? if prelim_model_for_median: grp.compute_full_model(fit_info=None, verbose=True, store=False, mag_limit=prelim_mag_limit, coeffs=init_coeffs, cpu_count=cpu_count, model_kwargs=model_kwargs) # Subtract a median along the dispersion direction refine_niter = 0 grp.subtract_median_filter(filter_size=median_filter_size, filter_central=median_filter_central, second_pass_filtering=second_pass_filtering, box_filter_sn=box_filter_sn, box_filter_width=box_filter_width, mask_sn_threshold=median_mask_sn_threshold, mask_sn_dilate_iters=median_mask_dilate, subtract_model=prelim_model_for_median, put_model_in_median=prelim_model_for_median) else: ################ # Compute preliminary model grp.compute_full_model(fit_info=None, verbose=True, store=False, mag_limit=prelim_mag_limit, coeffs=init_coeffs, cpu_count=cpu_count, model_kwargs=model_kwargs) ############## # Save model to avoid having to recompute it again grp.save_full_data() ############# # Mask edges of the exposures not covered by reference image if mask_mosaic_edges: try: # Read footprint file created ealier fp_file = '{0}-ir.yaml'.format(field_root) if os.path.exists(fp_file): with open(fp_file) as fp: fp_data = yaml.load(fp, Loader=yaml.Loader) det_poly = utils.SRegion(fp_data[0]['footprint']) det_poly = det_poly.shapely[0] for flt in grp.FLTs: flt.mask_mosaic_edges(sky_poly=det_poly, verbose=True, dq_mask=False, dq_value=1024, err_scale=10, resid_sn=-1) else: msg = 'auto_script.grism_prep: ' msg += f'Couldn\'t find file {fp_file}' msg += 'for mask_mosaic_edges' utils.log_comment(utils.LOGFILE, msg, verbose=True) except: utils.log_exception(utils.LOGFILE, traceback) pass # Sep background if sep_background_kwargs is not None: grp.subtract_sep_background(**sep_background_kwargs) elif not subtract_median_filter: ################ # Remove constant modal background for i in range(grp.N): mask = (grp.FLTs[i].model < grp.FLTs[i].grism['ERR']*0.6) mask &= (grp.FLTs[i].grism['SCI'] != 0) # Fit Gaussian to the masked pixel distribution clip = np.ones(mask.sum(), dtype=bool) for iter in range(3): clip_data = grp.FLTs[i].grism.data['SCI'][mask][clip] n = scipy.stats.norm.fit(clip_data) clip = np.abs(grp.FLTs[i].grism.data['SCI'][mask]) < 3*n[1] del(clip_data) mode = n[0] logstr = '# grism_mode_bg {0} {1} {2:.4f}' logstr = logstr.format(grp.FLTs[i].grism.parent_file, grp.FLTs[i].grism.filter, mode) utils.log_comment(utils.LOGFILE, logstr, verbose=True) try: ds9.view(grp.FLTs[i].grism['SCI'] - grp.FLTs[i].model) except: pass # Subtract grp.FLTs[i].grism.data['SCI'] -= mode ############# # Refine the model i = 0 if ds9: ds9.view(grp.FLTs[i].grism['SCI'] - grp.FLTs[i].model) fr = ds9.get('frame') if refine_niter > 0: utils.log_comment(utils.LOGFILE, '# Refine contamination', verbose=True, show_date=True) for iter in range(refine_niter): print(f'\nRefine contamination model, iter # {iter}\n') if ds9: ds9.set('frame {0}'.format(int(fr)+iter+1)) if (iter == 0) & (refine_niter > 0): refine_i = 1 else: refine_i = refine_fcontam grp.refine_list(poly_order=refine_poly_order, mag_limits=refine_mag_limits, max_coeff=5, ds9=ds9, verbose=True, fcontam=refine_i, wave=np.linspace(*grp.polyx[:2], 100)*1.e4) # Do background again if sep_background_kwargs is not None: grp.subtract_sep_background(**sep_background_kwargs) ############## # Save model to avoid having to recompute it again grp.save_full_data() # Link minimal files to Extractions directory os.chdir(EXTRACT_PATH) os.system(f'ln -s {PREP_PATH}/*GrismFLT* .') os.system(f'ln -s {PREP_PATH}/*.0?.wcs.fits .') os.system(f'ln -s {PREP_PATH}/{field_root}-*.cat.fits .') os.system(f'ln -s {PREP_PATH}/{field_root}-*seg.fits .') os.system(f'ln -s {PREP_PATH}/*_phot.fits .') return grp
DITHERED_PLINE = {'kernel': 'point', 'pixfrac': 0.2, 'pixscale': 0.1, 'size': 8, 'wcs': None} PARALLEL_PLINE = {'kernel': 'square', 'pixfrac': 1.0, 'pixscale': 0.1, 'size': 8, 'wcs': None}
[docs]def refine_model_with_fits(field_root='j142724+334246', grp=None, master_files=None, spectrum='continuum', clean=True, max_chinu=5, use_jwst_crds=False): """ Refine the full-field grism models with the best fit spectra from individual extractions. """ import glob import traceback try: from .. import multifit except: from grizli import multifit if grp is None: if master_files is None: master_files = glob.glob('*GrismFLT.fits') master_files.sort() catalog = glob.glob(f'{field_root}-*.cat.fits')[0] try: seg_file = glob.glob(f'{field_root}-*_seg.fits')[0] except: seg_file = None grp = multifit.GroupFLT(grism_files=master_files, direct_files=[], ref_file=None, seg_file=seg_file, catalog=catalog, cpu_count=-1, sci_extn=1, pad=(64,256), use_jwst_crds=use_jwst_crds) fit_files = glob.glob('*full.fits') fit_files.sort() N = len(fit_files) if N == 0: return False msg = 'Refine model ({0}/{1}): {2} / skip (chinu={3:.1f}, dof={4})' for i, file in enumerate(fit_files): try: hdu = pyfits.open(file) id = hdu[0].header['ID'] fith = hdu['ZFIT_STACK'].header chinu = fith['CHIMIN']/fith['DOF'] if (chinu > max_chinu) | (fith['DOF'] < 10): print(msg.format(i, N, file, chinu, fith['DOF'])) continue sp = utils.GTable(hdu['TEMPL'].data) dt = np.float wave = np.asarray(sp['wave'],dtype=dt) # .byteswap() flux = np.asarray(sp[spectrum],dtype=dt) # .byteswap() grp.compute_single_model(int(id), mag=19, size=-1, store=False, spectrum_1d=[wave, flux], is_cgs=True, get_beams=None, in_place=True) print('Refine model ({0}/{1}): {2}'.format(i, N, file)) except: print('Refine model ({0}/{1}): {2} / failed'.format(i, N, file)) grp.save_full_data() if clean: print('# refine_model_with_fits: cleanup') files = glob.glob('*_grism_*fits') files += glob.glob('*beams.fits') files += glob.glob('*stack.fits') files += glob.glob('*stack.png') files += glob.glob('*full.fits') for file in files: os.remove(file) del(grp)
[docs]def extract(field_root='j142724+334246', maglim=[13, 24], prior=None, MW_EBV=0.00, ids=[], pline=DITHERED_PLINE, fit_only_beams=True, run_fit=True, poly_order=7, oned_R=30, master_files=None, grp=None, bad_pa_threshold=None, fit_trace_shift=False, size=32, diff=True, min_sens=0.02, fcontam=0.2, min_mask=0.01, sys_err=0.03, skip_complete=True, fit_args={}, args_file='fit_args.npy', get_only_beams=False, use_jwst_crds=False): import glob import os import numpy as np import matplotlib.pyplot as plt #import grizli try: from .. import multifit, prep, utils, fitting except: from grizli import multifit, prep, utils, fitting if master_files is None: master_files = glob.glob('*GrismFLT.fits') master_files.sort() isJWST = prep.check_isJWST(master_files[0]) if grp is None: init_grp = True catalog = glob.glob('{0}-*.cat.fits'.format(field_root))[0] try: seg_file = glob.glob('{0}-*_seg.fits'.format(field_root))[0] except: seg_file = None grp = multifit.GroupFLT(grism_files=master_files, direct_files=[], ref_file=None, seg_file=seg_file, catalog=catalog, cpu_count=-1, sci_extn=1, pad=(64,256), use_jwst_crds=use_jwst_crds) else: init_grp = False ############### # PHotometry target = field_root try: file_args = np.load(args_file, allow_pickle=True)[0] MW_EBV = file_args['MW_EBV'] min_sens = file_args['min_sens'] min_mask = file_args['min_mask'] fcontam = file_args['fcontam'] sys_err = file_args['sys_err'] pline = file_args['pline'] fit_args = file_args fit_args.pop('kwargs') except: pass if get_only_beams: beams = grp.get_beams(ids, size=size, beam_id='A', min_sens=min_sens) if init_grp: del(grp) return(beams) ########### # IDs to extract # ids=[1096] if ids == []: clip = (grp.catalog['MAG_AUTO'] > maglim[0]) & (grp.catalog['MAG_AUTO'] < maglim[1]) so = np.argsort(grp.catalog['MAG_AUTO'][clip]) ids = grp.catalog['NUMBER'][clip][so] else: ids = [int(id) for id in ids] # Stack the different beans # Use "binning" templates for standardized extraction if oned_R: bin_steps, step_templ = utils.step_templates(wlim=[5000, 18000.0], R=oned_R, round=10) init_templates = step_templ else: # Polynomial templates wave = np.linspace(2000, 2.5e4, 100) poly_templ = utils.polynomial_templates(wave, order=poly_order) init_templates = poly_templ #size = 32 close = True show_beams = True if __name__ == '__main__': # Interactive size = 32 close = Skip = False pline = {'kernel': 'point', 'pixfrac': 0.2, 'pixscale': 0.1, 'size': 8, 'wcs': None} prior = None skip_complete = True fit_trace_shift = False bad_pa_threshold = 1.6 MW_EBV = 0 ############### # Stacked spectra for ii, id in enumerate(ids): if skip_complete: if os.path.exists('{0}_{1:05d}.stack.png'.format(target, id)): continue beams = grp.get_beams(id, size=size, beam_id='A', min_sens=min_sens) for i in range(len(beams))[::-1]: if beams[i].fit_mask.sum() < 10: beams.pop(i) print('{0}/{1}: {2} {3}'.format(ii, len(ids), id, len(beams))) if len(beams) < 1: continue #mb = multifit.MultiBeam(beams, fcontam=fcontam, group_name=target, psf=False, MW_EBV=MW_EBV, min_sens=min_sens) mb = multifit.MultiBeam(beams, fcontam=fcontam, group_name=target, psf=False, isJWST=isJWST, MW_EBV=MW_EBV, sys_err=sys_err, min_mask=min_mask, min_sens=min_sens) if bad_pa_threshold is not None: out = mb.check_for_bad_PAs(chi2_threshold=bad_pa_threshold, poly_order=1, reinit=True, fit_background=True) fit_log, keep_dict, has_bad = out if has_bad: print('\n Has bad PA! Final list: {0}\n{1}'.format(keep_dict, fit_log)) ixi = grp.catalog['NUMBER'] == id if (fit_trace_shift > 0) & (grp.catalog['MAG_AUTO'][ixi][0] < 24.5): b = mb.beams[0] b.compute_model() sn_lim = fit_trace_shift*1 if (np.max((b.model/b.grism['ERR'])[b.fit_mask.reshape(b.sh)]) > sn_lim) | (sn_lim > 100): print(' Fit trace shift: \n') try: shift = mb.fit_trace_shift(tol=1.e-3, verbose=True, split_groups=True, lm=True) except: pass try: tfit = mb.template_at_z(z=0, templates=init_templates, fit_background=True, fitter='lstsq', get_uncertainties=2) except: tfit = None try: fig1 = mb.oned_figure(figsize=[5, 3], tfit=tfit, show_beams=show_beams, scale_on_stacked=True, ylim_percentile=5) if oned_R: outroot = '{0}_{1:05d}.R{2:.0f}'.format(target, id, oned_R) hdu = mb.oned_spectrum_to_hdu(outputfile=outroot+'.fits', tfit=tfit, wave=bin_steps) else: outroot = '{0}_{1:05d}.1D'.format(target, id) hdu = mb.oned_spectrum_to_hdu(outputfile=outroot+'.fits', tfit=tfit) fig1.savefig(outroot+'.png') except: continue hdu, fig = mb.drizzle_grisms_and_PAs(fcontam=0.5, flambda=False, kernel='point', size=32, tfit=tfit, diff=diff) fig.savefig('{0}_{1:05d}.stack.png'.format(target, id)) hdu.writeto('{0}_{1:05d}.stack.fits'.format(target, id), overwrite=True) mb.write_master_fits() if False: # Fit here for AWS... fitting.run_all_parallel(id, verbose=True) if close: plt.close(fig) plt.close(fig1) del(hdu) del(mb) for k in range(100000): plt.close() if not run_fit: if init_grp: return grp else: return True for ii, id in enumerate(ids): print('{0}/{1}: {2}'.format(ii, len(ids), id)) if not os.path.exists('{0}_{1:05d}.beams.fits'.format(target, id)): continue if skip_complete: if os.path.exists('{0}_{1:05d}.line.png'.format(target, id)): continue try: out = fitting.run_all_parallel(id, get_output_data=True, **fit_args, args_file=args_file) mb, st, fit, tfit, line_hdu = out spectrum_1d = [tfit['cont1d'].wave, tfit['cont1d'].flux] grp.compute_single_model(id, mag=-99, size=-1, store=False, spectrum_1d=spectrum_1d, get_beams=None, in_place=True, is_cgs=True) if close: for k in range(1000): plt.close() del(out) except: pass # Re-save data with updated models if init_grp: grp.save_full_data() return grp else: return True
[docs]def generate_fit_params(field_root='j142724+334246', fitter=['nnls', 'bounded'], prior=None, MW_EBV=0.00, pline=DITHERED_PLINE, fit_only_beams=True, run_fit=True, poly_order=7, fsps=True, min_sens=0.01, sys_err=0.03, fcontam=0.2, zr=[0.05, 3.6], dz=[0.004, 0.0004], fwhm=1000, lorentz=False, include_photometry=True, use_phot_obj=False, save_file='fit_args.npy', fit_trace_shift=False, full_line_list=['Lya', 'OII', 'Hb', 'OIII', 'Ha', 'Ha+NII', 'SII', 'SIII','PaB','He-1083','PaA'], **kwargs): """ Generate a parameter dictionary for passing to the fitting script """ import numpy as np from grizli import utils, fitting from . import photoz phot = None t0 = utils.load_templates(fwhm=fwhm, line_complexes=True, stars=False, full_line_list=None, continuum_list=None, fsps_templates=fsps, alf_template=True, lorentz=lorentz) t1 = utils.load_templates(fwhm=fwhm, line_complexes=False, stars=False, full_line_list=None, continuum_list=None, fsps_templates=fsps, alf_template=True, lorentz=lorentz) args = fitting.run_all(0, t0=t0, t1=t1, fwhm=1200, zr=zr, dz=dz, fitter=fitter, group_name=field_root, fit_stacks=False, prior=prior, fcontam=fcontam, pline=pline, min_sens=min_sens, mask_sn_limit=np.inf, fit_beams=False, root=field_root, fit_trace_shift=fit_trace_shift, phot=phot, use_phot_obj=use_phot_obj, verbose=True, scale_photometry=False, show_beams=True, overlap_threshold=10, get_ir_psfs=True, fit_only_beams=fit_only_beams, MW_EBV=MW_EBV, sys_err=sys_err, get_dict=True, full_line_list=full_line_list) for k in kwargs: if k in args: args[k] = kwargs[k] # EAZY-py photometry object from HST photometry try: import eazy.photoz HAS_EAZY = True except: HAS_EAZY = False if include_photometry & HAS_EAZY: aper_ix = include_photometry*1 utils.set_warnings() total_flux = 'flux_auto' obj = photoz.eazy_photoz(field_root, object_only=True, apply_prior=False, beta_prior=True, aper_ix=aper_ix-1, force=True, get_external_photometry=False, compute_residuals=False, total_flux=total_flux) cat = obj.cat #apcorr = cat['flux_iso']/(cat['flux_auto']*cat['tot_corr']) apcorr = None phot_obj = photoz.EazyPhot(obj, grizli_templates=t0, source_text='grizli_HST_photometry', apcorr=apcorr, include_photometry=True, include_pz=False) args['phot_obj'] = phot_obj args['scale_photometry'] = True np.save(save_file, [args]) print('Saved arguments to {0}.'.format(save_file)) return args
[docs]def summary_catalog(**kwargs): from . import summary res = summary.summary_catalog(**kwargs) return res
[docs]def fine_alignment(field_root='j142724+334246', HOME_PATH='/Volumes/Pegasus/Grizli/Automatic/', min_overlap=0.2, stopme=False, ref_err=1.e-3, radec=None, redrizzle=True, shift_only=True, maglim=[17, 24], NITER=1, catalogs=['GAIA', 'PS1', 'NSC', 'SDSS', 'WISE'], method='Powell', radius=5., program_str=None, match_str=[], all_visits=None, date=None, gaia_by_date=False, tol=None, fit_options=None, print_options={'precision': 3, 'sign': ' '}, include_internal_matches=True, master_gaia_catalog=None): """ Try fine alignment from visit-based SourceExtractor catalogs """ import os import glob import time try: from .. import prep, utils from ..prep import get_radec_catalog, get_gaia_radec_at_time from ..utils import transform_wcs frame = inspect.currentframe() utils.log_function_arguments(utils.LOGFILE, frame, 'auto_script.fine_alignment') except: from grizli import prep, utils from grizli.prep import get_radec_catalog from grizli.utils import transform_wcs import numpy as np np.set_printoptions(**print_options) import matplotlib.pyplot as plt from shapely.geometry import Polygon from scipy.spatial import ConvexHull from drizzlepac import updatehdr import astropy.units as u from scipy.optimize import minimize, fmin_powell import copy if all_visits is None: #_ = np.load(f'{field_root}_visits.npy', allow_pickle=True) all_visits, all_groups, info = load_visit_info(field_root, verbose=False) #all_visits, all_groups, info = _ failed_list = glob.glob('*failed') visits = [] files = [] for visit in all_visits: file = '{0}.cat.fits'.format(visit['product']) if visit['product']+'.failed' in failed_list: continue if os.path.exists(file): if program_str is not None: prog = visit['product'].split('-')[-4] if prog != program_str: continue if len(match_str) > 0: has_match = False for m in match_str: has_match |= m in visit['product'] if not has_match: continue visits.append(visit) files.append(file) if radec is None: ra_i, dec_i = np.median(info['RA_TARG']), np.median(info['DEC_TARG']) print('Center coordinate: ', ra_i, dec_i) if date is not None: radec, ref_catalog = get_radec_catalog(ra=ra_i, dec=dec_i, product=field_root, date=date, reference_catalogs=catalogs, radius=radius) else: radec, ref_catalog = get_radec_catalog(ra=ra_i, dec=dec_i, product=field_root, reference_catalogs=catalogs, radius=radius) #ref = 'j152643+164738_sdss.radec' ref_tab = utils.GTable(np.loadtxt(radec, unpack=True).T, names=['ra', 'dec']) ridx = np.arange(len(ref_tab)) # Global GAIA DR2 catalog if gaia_by_date: if master_gaia_catalog is not None: msg = (f'Master gaia catalog: {master_gaia_catalog}') utils.log_comment(utils.LOGFILE, msg, show_date=True, verbose=True) gaia_tab = utils.read_catalog(master_gaia_catalog) else: dra = np.max(np.abs(info['RA_TARG']-ra_i)) dde = np.max(np.abs(info['DEC_TARG']-dec_i)) drad = np.sqrt((dra*np.cos(dec_i/180*np.pi))**2+(dde**2))*60+2 msg = (f'Get field GAIA catalog ({ra_i:.6f}, {dec_i:.6f})' + f' r={drad:.1f}arcmin') utils.log_comment(utils.LOGFILE, msg, show_date=True, verbose=True) gaia_tab = prep.get_gaia_DR2_vizier(ra=ra_i, dec=dec_i, radius=drad) # Done msg = f'GAIA catalog: {len(gaia_tab)} objects' utils.log_comment(utils.LOGFILE, msg, show_date=True, verbose=True) if len(gaia_tab) == 0: msg = f'!No GAIA objects found, will run without absolute frame' utils.log_comment(utils.LOGFILE, msg, show_date=True, verbose=True) gaia_tab = None else: gaia_tab = None # Find matches tab = {} for i, file in enumerate(files): tab[i] = {} t_i = utils.GTable.gread(file) mclip = (t_i['MAG_AUTO'] > maglim[0]) & (t_i['MAG_AUTO'] < maglim[1]) if mclip.sum() == 0: continue tab[i]['cat'] = t_i[mclip] try: sci_file = glob.glob(file.replace('.cat', '_dr?_sci'))[0] except: sci_file = glob.glob(file.replace('.cat', '_wcs'))[0] im = pyfits.open(sci_file) tab[i]['wcs'] = pywcs.WCS(im[0].header) tab[i]['transform'] = [0, 0, 0, 1] tab[i]['xy'] = np.array([tab[i]['cat']['X_IMAGE'], tab[i]['cat']['Y_IMAGE']]).T tab[i]['match_idx'] = {} if gaia_by_date & (gaia_tab is not None): drz_file = glob.glob(file.replace('.cat.fits', '*dr?_sci.fits'))[0] drz_im = pyfits.open(drz_file) coo = get_gaia_radec_at_time(gaia_tab, date=drz_im[0].header['EXPSTART'], format='mjd') ok = np.isfinite(coo.ra+coo.dec) ref_tab = utils.GTable() if ok.sum() == 0: ref_tab['ra'] = [0.] ref_tab['dec'] = [-89.] else: ref_tab['ra'] = coo.ra[ok].value ref_tab['dec'] = coo.dec[ok].value prod = '-'.join(file.split('-')[:-1]) prep.table_to_radec(ref_tab, f'{prod}_gaia.radec') # radec, ref_catalog = get_radec_catalog(ra=drz_im[0].header['CRVAL1'], # dec=drz_im[0].header['CRVAL2'], # product='-'.join(file.split('-')[:-1]), date=drz_im[0].header['EXPSTART'], date_format='mjd', # reference_catalogs=['GAIA'], radius=radius) # # ref_tab = utils.GTable(np.loadtxt(radec, unpack=True).T, names=['ra', 'dec']) ridx = np.arange(len(ref_tab)) tab[i]['ref_tab'] = ref_tab idx, dr = tab[i]['cat'].match_to_catalog_sky(ref_tab) clip = dr < 0.6*u.arcsec if clip.sum() > 1: tab[i]['match_idx'][-1] = [idx[clip], ridx[clip]] msg = '{0} Ncat={1} Nref={2}' utils.log_comment(utils.LOGFILE, msg.format(sci_file, mclip.sum(), clip.sum()), show_date=False, verbose=True) # ix, jx = tab[i]['match_idx'][-1] # ci = tab[i]['cat']#[ix] # cj = ref_tab#[jx] if include_internal_matches: for i, file in enumerate(files): for j in range(i+1, len(files)): sidx = np.arange(len(tab[j]['cat'])) idx, dr = tab[i]['cat'].match_to_catalog_sky(tab[j]['cat']) clip = dr < 0.3*u.arcsec print(file, files[j], clip.sum()) if clip.sum() < 5: continue if clip.sum() > 0: tab[i]['match_idx'][j] = [idx[clip], sidx[clip]] #ref_err = 0.01 # shift_only=True if shift_only > 0: # Shift only p0 = np.vstack([[0, 0] for i in tab]) pscl = np.array([10., 10.]) elif shift_only < 0: # Shift + rot + scale p0 = np.vstack([[0, 0, 0, 1] for i in tab]) pscl = np.array([10., 10., 100., 100.]) else: # Shift + rot p0 = np.vstack([[0, 0, 0] for i in tab]) pscl = np.array([10., 10., 100.]) #ref_err = 0.06 if False: field_args = (tab, ref_tab, ref_err, shift_only, 'field') _objfun_align(p0*10., *field_args) fit_args = (tab, ref_tab, ref_err, shift_only, 'huber') plot_args = (tab, ref_tab, ref_err, shift_only, 'plot') plotx_args = (tab, ref_tab, ref_err, shift_only, 'plotx') pi = p0*1. # *10. for iter in range(NITER): fit = minimize(_objfun_align, pi*pscl, args=fit_args, method=method, jac=None, hess=None, hessp=None, bounds=None, constraints=(), tol=tol, callback=None, options=fit_options) pi = fit.x.reshape((-1, len(pscl)))/pscl ######## # Show the result fig = plt.figure(figsize=[8, 8]) ax = fig.add_subplot(221) _objfun_align(p0*pscl, *plot_args) ax.set_xticklabels([]) ax.set_ylabel('dDec') ax = fig.add_subplot(223) _objfun_align(p0*pscl, *plotx_args) ax.set_ylabel('dDec') ax.set_xlabel('dRA') ax = fig.add_subplot(222) _objfun_align(fit.x, *plot_args) ax.set_yticklabels([]) ax.set_xticklabels([]) ax = fig.add_subplot(224) _objfun_align(fit.x, *plotx_args) ax.set_yticklabels([]) ax.set_xlabel('dRA') for ax in fig.axes: ax.grid() ax.set_xlim(-0.35, 0.35) ax.set_ylim(-0.35, 0.35) fig.tight_layout(pad=0.5) extra_str = '' if program_str: extra_str += '.{0}'.format(program_str) if match_str: extra_str += '.{0}'.format('.'.join(match_str)) fig.text(0.97, 0.02, time.ctime(), ha='right', va='bottom', fontsize=5, transform=fig.transFigure) fig.savefig('{0}{1}_fine.png'.format(field_root, extra_str)) fine_file = '{0}{1}_fine.yaml'.format(field_root, extra_str) save_fine_yaml(visits, fit, yaml_file=fine_file) #np.save('{0}{1}_fine.npy'.format(field_root, extra_str), [visits, fit]) return tab, fit, visits
[docs]def save_fine_yaml(visits, fit, yaml_file='fit_fine.yaml'): """ Save results from fine_alignment """ vis = [visit_dict_to_strings(v) for v in visits] fit_res = {} for k in fit: if k in ['direc','x']: fit_res[k] = fit[k].tolist() else: fit_res[k] = fit[k] fit_res['fun'] = float(fit['fun']) with open(yaml_file, 'w') as fp: yaml.dump([vis, fit_res], stream=fp, Dumper=yaml.Dumper)
[docs]def load_fine_yaml(yaml_file='fit_fine.yaml'): """ Load fine_alignment result """ with open(yaml_file) as fp: vis, fit = yaml.load(fp, Loader=yaml.Loader) visits = [visit_dict_from_strings(v) for v in vis] for k in ['direc','x']: fit[k] = np.array(fit[k]) return visits, fit
[docs]def update_wcs_headers_with_fine(field_root, backup=True): """ Update grism headers with the fine shifts """ import os import numpy as np import glob import astropy.io.fits as pyfits import astropy.wcs as pywcs from drizzlepac import updatehdr #import grizli.prep try: from .. import prep except: from grizli import prep if backup: if not os.path.exists('FineBkup'): os.mkdir('FineBkup') #visits, all_groups, info = np.load(f'{field_root}_visits.npy', # allow_pickle=True) visits, all_groups, info = load_visit_info(field_root, verbose=False) fit_files = glob.glob('{0}*fine.yaml'.format(field_root)) for fit_file in fit_files: #fine_visits, fine_fit = np.load(fit_file, allow_pickle=True) fine_visits, fine_fit = load_fine_yaml(yaml_file=fit_file) N = len(fine_visits) if backup: for i in range(N): direct = fine_visits[i] for file in direct['files']: os.system(f'cp {file} FineBkup/') print(file) trans = np.reshape(fine_fit['x'], (N, -1)) # /10. sh = trans.shape if sh[1] == 2: pscl = np.array([10., 10.]) trans = np.hstack([trans/pscl, np.zeros((N, 1)), np.ones((N, 1))]) elif sh[1] == 3: pscl = np.array([10., 10., 100]) trans = np.hstack([trans/pscl, np.ones((N, 1))]) elif sh[1] == 4: pscl = np.array([10., 10., 100, 100]) trans = trans/pscl # Update direct WCS for ix, direct in enumerate(fine_visits): #direct = visits[ix] out_shift, out_rot = trans[ix, :2], trans[ix, 2] out_scale = trans[ix, 3] xyscale = trans[ix, :4] xyscale[2] *= -1 out_rot *= -1 try: wcs_ref_file = str('{0}.cat.fits'.format(direct['product'])) wcs_ref = pywcs.WCS(pyfits.open(wcs_ref_file)['WCS'].header, relax=True) except: wcs_ref_file = str('{0}_wcs.fits'.format(direct['product'])) wcs_ref = pywcs.WCS(pyfits.open(wcs_ref_file)[0].header, relax=True) for file in direct['files']: prep.update_wcs_fits_log(file, wcs_ref, xyscale=xyscale, initialize=False, replace=('.fits', '.wcslog.fits'), wcsname='FINE') updatehdr.updatewcs_with_shift(file, wcs_ref_file, xsh=out_shift[0], ysh=out_shift[1], rot=out_rot, scale=out_scale, wcsname='FINE', force=True, reusename=True, verbose=True, sciext='SCI') # Bug in astrodrizzle? Dies if the FLT files don't have MJD-OBS # keywords im = pyfits.open(file, mode='update') im[0].header['MJD-OBS'] = im[0].header['EXPSTART'] im.flush() # Update grism WCS for i in range(len(all_groups)): direct = all_groups[i]['direct'] grism = all_groups[i]['grism'] for j in range(N): if fine_visits[j]['product'] == direct['product']: print(direct['product'], grism['product'], trans[j, :]) if backup: for file in grism['files']: os.system(f'cp {file} FineBkup/') print(file) prep.match_direct_grism_wcs(direct=direct, grism=grism, get_fresh_flt=False, xyscale=trans[j, :])
[docs]def make_reference_wcs(info, files=None, output='mosaic_wcs-ref.fits', filters=['G800L', 'G102', 'G141','GR150C', 'GR150R'], force_wcs=None, pad_reference=90, pixel_scale=None, get_hdu=True): """ Make a reference image WCS based on the grism exposures Parameters ---------- info : `~astropy.table.Table` Exposure information table with columns 'FILE' and 'FILTER'. output : str, None Filename for output wcs reference image. filters : list or None List of filters to consider for the output mosaic. If None, then use all exposures in the `info` list. force_wcs : `~astropy.wcs.WCS` or None Explicit WCS to use, rather than deriving from a list of files pad_reference : float Image padding, in `~astropy.units.arcsec`. pixel_scale : None or float Pixel scale in in `~astropy.units.arcsec`. If None, then the script computes automatically get_hdu : bool If True, then generate an `~astropy.io.fits.ImageHDU` object and save to a file if `output` is defined. If False, return just the computed `~astropy.wcs.WCS`. Returns ------- `~astropy.io.fits.ImageHDU` or `~astropy.wcs.WCS`, see `get_hdu`. """ if isinstance(force_wcs, pywcs.WCS): _h = utils.to_header(force_wcs) _data = np.zeros((_h['NAXIS2'], _h['NAXIS1']), dtype=np.int16) ref_hdu = pyfits.PrimaryHDU(header=_h, data=_data) if output is not None: ref_hdu.writeto(output, overwrite=True, output_verify='fix') return ref_hdu if filters is not None: use = utils.column_values_in_list(info['FILTER'], filters) if use.sum() == 0: # All files files = info['FILE'] else: files = info['FILE'][use] else: files = info['FILE'] # Just ACS, pixel scale 0.03 if pixel_scale is None: # Auto determine pixel size, 0.03" pixels if only ACS, otherwise 0.06 any_grism = utils.column_values_in_list(info['FILTER'], ['G800L', 'G102', 'G141', 'GR150C', 'GR150R']) acs_grism = (info['FILTER'] == 'G800L') only_acs = list(np.unique(info['INSTRUME'])) == ['ACS'] if ((acs_grism.sum() == any_grism.sum()) & (any_grism.sum() > 0)) | (only_acs): pixel_scale = 0.03 else: pixel_scale = 0.06 ref_hdu = utils.make_maximal_wcs(files, pixel_scale=pixel_scale, get_hdu=get_hdu, pad=pad_reference, verbose=True) if get_hdu: ref_hdu.data = ref_hdu.data.astype(np.int16) if output is not None: ref_hdu.writeto(output, overwrite=True, output_verify='fix') return ref_hdu else: return ref_hdu[1]
[docs]def drizzle_overlaps(field_root, filters=['F098M', 'F105W', 'F110W', 'F115W', 'F125W', 'F140W', 'F150W', 'F160W', 'F200W'], ref_image=None, ref_wcs=None, bits=None, pixfrac=0.75, scale=0.06, make_combined=False, drizzle_filters=True, skysub=False, skymethod='localmin', match_str=[], context=False, pad_reference=60, min_nexp=2, static=True, skip_products=[], include_saturated=False, multi_driz_cr=False, filter_driz_cr=False, **kwargs): """ Drizzle filter groups based on precomputed image associations """ import numpy as np import glob try: from .. import prep, utils except: from grizli import prep ############## # Redrizzle #visits, all_groups, info = np.load('{0}_visits.npy'.format(field_root), # allow_pickle=True) visits, all_groups, info = load_visit_info(field_root, verbose=False) failed_list = glob.glob('*failed') #overlaps = np.load('{0}_overlaps.npy'.format(field_root))[0] #keep = [] if make_combined: if isinstance(make_combined, str): label = make_combined else: label = 'ir' else: label = 'ir' wfc3ir = {'product': '{0}-{1}'.format(field_root, label), 'files': []} if ref_image is not None: wfc3ir['reference'] = ref_image if ref_wcs is not None: wfc3ir['reference_wcs'] = ref_wcs filter_groups = {} for visit in visits: msg = (visit) utils.log_comment(utils.LOGFILE, msg, show_date=True, verbose=True) # Visit failed for some reason _failed = (visit['product']+'.wcs_failed' in failed_list) _failed |= (visit['product']+'.failed' in failed_list) _failed |= (visit['product'] in skip_products) if _failed: msg = ('visit failed') utils.log_comment(utils.LOGFILE, msg, show_date=True, verbose=True) continue # Too few exposures (i.e., one with unreliable CR flags) if len(visit['files']) < min_nexp: msg = ('visit has too few exposures') utils.log_comment(utils.LOGFILE, msg, show_date=True, verbose=True) continue # Not one of the desired filters filt = visit['product'].split('-')[-1] if filt == 'clear': filt = visit['product'].split('-')[-2] if filt.upper() not in filters: msg = ('filt.upper not in filters') utils.log_comment(utils.LOGFILE, msg, show_date=True, verbose=True) continue # Are all of the exposures in ./? has_exposures = True for file in visit['files']: has_exposures &= os.path.exists('../Prep/'+file) if not has_exposures: print('Visit {0} missing exposures, skip'.format(visit['product'])) continue # IS UVIS? if visit['files'][0].startswith('i') & ('_flc' in visit['files'][0]): filt += 'u' is_uvis = True else: is_uvis = False if len(match_str) > 0: has_match = False for m in match_str: has_match |= m in visit['product'] if not has_match: continue if filt not in filter_groups: filter_groups[filt] = {'product': f'{field_root}-{filt}', 'files': [], 'reference': ref_image, 'reference_wcs': ref_wcs} filter_groups[filt]['files'].extend(visit['files']) # Add polygon if 'footprints' in visit: for fp in visit['footprints']: if isinstance(fp, list): fps = fp else: fps = [fp] for fp_i in fps: if 'footprint' in filter_groups[filt]: fpun = filter_groups[filt]['footprint'].union(fp_i) filter_groups[filt]['footprint'] = fpun else: filter_groups[filt]['footprint'] = fp_i.buffer(0) if (filt.upper() in filters) | (is_uvis & (filt.upper()[:-1] in filters)): wfc3ir['files'].extend(visit['files']) if 'footprint' in filter_groups[filt]: fp_i = filter_groups[filt]['footprint'] if 'footprint' in wfc3ir: wfc3ir['footprint'] = wfc3ir['footprint'].union(fp_i) else: wfc3ir['footprint'] = fp_i.buffer(0) if len(filter_groups) == 0: print('No filters found ({0})'.format(filters)) return None keep = [filter_groups[k] for k in filter_groups] if (ref_image is None) & (ref_wcs is None): print('\nCompute mosaic WCS: {0}_wcs-ref.fits\n'.format(field_root)) ref_hdu = utils.make_maximal_wcs(wfc3ir['files'], pixel_scale=scale, get_hdu=True, pad=pad_reference, verbose=True) ref_hdu.writeto('{0}_wcs-ref.fits'.format(field_root), overwrite=True, output_verify='fix') wfc3ir['reference'] = '{0}_wcs-ref.fits'.format(field_root) for i in range(len(keep)): keep[i]['reference'] = '{0}_wcs-ref.fits'.format(field_root) if ref_wcs is not None: pass if make_combined: # Figure out if we have more than one instrument inst_keys = np.unique([os.path.basename(file)[0] for file in wfc3ir['files']]) prep.drizzle_overlaps([wfc3ir], parse_visits=False, pixfrac=pixfrac, scale=scale, skysub=False, bits=bits, final_wcs=True, final_rot=0, final_outnx=None, final_outny=None, final_ra=None, final_dec=None, final_wht_type='IVM', final_wt_scl='exptime', check_overlaps=False, context=context, static=(static & (len(inst_keys) == 1)), include_saturated=include_saturated, run_driz_cr=multi_driz_cr, **kwargs) # np.save('{0}.npy'.format(wfc3ir['product']), [wfc3ir]) wout = visit_dict_to_strings(wfc3ir) with open('{0}.yaml'.format(wfc3ir['product']), 'w') as fp: yaml.dump([wout], stream=fp, Dumper=yaml.Dumper) if drizzle_filters: print('Drizzle mosaics in filters: {0}'.format(filter_groups.keys())) prep.drizzle_overlaps(keep, parse_visits=False, pixfrac=pixfrac, scale=scale, skysub=skysub, skymethod=skymethod, bits=bits, final_wcs=True, final_rot=0, final_outnx=None, final_outny=None, final_ra=None, final_dec=None, final_wht_type='IVM', final_wt_scl='exptime', check_overlaps=False, context=context, static=static, include_saturated=include_saturated, run_driz_cr=filter_driz_cr, **kwargs)
FILTER_COMBINATIONS = {'ir': (IR_M_FILTERS + IR_W_FILTERS + NIRISS_FILTERS + NIRCAM_LW_FILTERS), 'opt': OPT_M_FILTERS + OPT_W_FILTERS}
[docs]def make_filter_combinations(root, weight_fnu=2, filter_combinations=FILTER_COMBINATIONS, force_photfnu=1.e-8, min_count=1, block_filters=[]): """ Combine ir/opt mosaics manually scaling a specific zeropoint """ from astropy.nddata import block_reduce # Output normalization os F814W/F140W ref_h = {} ref_h['opt'] = {'INSTRUME': 'ACS', 'DETECTOR': 'WFC', 'PHOTFLAM': 7.0178627203125e-20, 'PHOTBW': 653.24393453125, 'PHOTZPT': -21.1, 'PHOTMODE': 'ACS WFC1 F814W MJD#56438.5725', 'PHOTPLAM': 8045.415190625002, 'FILTER1': 'CLEAR1L', 'FILTER2': 'F814W'} ref_h['ir'] = {'INSTRUME': 'WFC3', 'DETECTOR': 'IR', 'PHOTFNU': 9.5291135e-08, 'PHOTFLAM': 1.4737148e-20, 'PHOTBW': 1132.39, 'PHOTZPT': -21.1, 'PHOTMODE': 'WFC3 IR F140W', 'PHOTPLAM': 13922.907, 'FILTER': 'F140W'} if force_photfnu is not None: for k in ref_h: ref_h[k]['PHOTFNU'] = force_photfnu #### count = {} num = {} den = {} for f in filter_combinations: num[f] = None den[f] = None count[f] = 0 output_sci = {} head = {} sci_files = glob.glob('{0}-[cf]*sci.fits*'.format(root)) sci_files.sort() for _isci, sci_file in enumerate(sci_files): #filt_i = sci_file.split('_dr')[0].split('-')[-1] #filt_ix = sci_file.split('_dr')[0].split('-')[-1] filt_i = sci_file.split(root+'-')[1].split('_dr')[0] filt_ix = sci_file.split(root+'-')[1].split('_dr')[0] # UVIS if filt_i.startswith('f') & filt_i.endswith('u'): filt_i = filt_i[:-1] band = None for f in filter_combinations: if filt_i.upper() in filter_combinations[f]: band = f break if band is None: continue # Which reference parameters to use? if filt_i.upper() in OPT_W_FILTERS + OPT_M_FILTERS: ref_h_i = ref_h['opt'] elif 'clear' in filt_i: ref_h_i = ref_h['ir'] else: ref_h_i = ref_h['ir'] output_sci[band] = sci_file.replace(filt_ix, band) im_i = pyfits.open(sci_file) wht_i = pyfits.open(sci_file.replace('_sci', '_wht')) photflam = im_i[0].header['PHOTFLAM'] ref_photflam = ref_h_i['PHOTFLAM'] photplam = im_i[0].header['PHOTPLAM'] ref_photplam = ref_h_i['PHOTPLAM'] if weight_fnu == 2: photflam = im_i[0].header['PHOTFNU'] ref_photflam = ref_h_i['PHOTFNU'] photplam = 1.0 ref_photplam = 1.0 if band not in head: head[band] = im_i[0].header.copy() else: for k in im_i[0].header: if k in ['', 'HISTORY']: continue head[band][k] = im_i[0].header[k] for k in ref_h_i: head[band][k] = ref_h_i[k] scl = photflam/ref_photflam if weight_fnu: scl_weight = photplam**2/ref_photplam**2 else: scl_weight = 1. if 'NCOMP' in head[band]: head[band]['NCOMP'] += 1 else: head[band]['NCOMP'] = (1, 'Number of combined images') _sci = im_i[0].data.astype(np.float32) _wht = wht_i[0].data.astype(np.float32) if filt_i.lower() in [b.lower() for b in block_filters]: _blocked = True blocked_wht = block_reduce(_wht, 2) / 4**2 blocked_sci = block_reduce(_sci*_wht, 2) / blocked_wht / 4 _sci = blocked_sci _sci[blocked_wht <= 0] = 0 _wht = blocked_wht else: _blocked = False msg = f'{sci_file} {filt_i} {band} block_reduce={_blocked}' msg += f' scl={scl} scl_wht={scl_weight}' utils.log_comment(utils.LOGFILE, msg, verbose=True) if num[band] is None: num[band] = np.zeros_like(_sci) den[band] = np.zeros_like(_sci) den_i = _wht/scl**2*scl_weight num[band] += _sci*scl*den_i den[band] += den_i count[band] += 1 head[band][f'CFILE{count[band]}'] = (os.path.basename(sci_file), 'Component file') head[band][f'CSCAL{count[band]}'] = (scl, 'Scale factor applied in combination') head[band][f'CFILT{count[band]}'] = (filt_i, 'Filter derived from the filename') # Done, make outputs for band in filter_combinations: if (num[band] is not None) & (count[band] >= min_count): sci = num[band]/den[band] wht = den[band] mask = (~np.isfinite(sci)) | (den == 0) sci[mask] = 0 wht[mask] = 0 print('Write {0}'.format(output_sci[band])) pyfits.PrimaryHDU(data=sci, header=head[band]).writeto(output_sci[band], overwrite=True, output_verify='fix') pyfits.PrimaryHDU(data=wht, header=head[band]).writeto(output_sci[band].replace('_sci', '_wht'), overwrite=True, output_verify='fix')
[docs]def make_combined_mosaics(root, fix_stars=False, mask_spikes=False, skip_single_optical_visits=True, ir_wcsref_file=None, ir_wcs=None, mosaic_args=args['mosaic_args'], mosaic_driz_cr_type=0, mosaic_drizzle_args=args['mosaic_drizzle_args'], **kwargs): """ Drizzle combined mosaics mosaic_driz_cr_type : int (mosaic_driz_cr_type & 1) : flag CRs on all IR combined (mosaic_driz_cr_type & 2) : flag CRs on IR filter combinations (mosaic_driz_cr_type & 4) : flag CRs on all OPT combined (mosaic_driz_cr_type & 8) : flag CRs on OPT filter combinations """ # Load visits info visits, groups, info = load_visit_info(root, verbose=False) # Mosaic WCS if ir_wcsref_file is None: ir_wcsref_file = f'{root}_wcs-ref.fits' if (not os.path.exists(ir_wcsref_file)): make_reference_wcs(info, output=ir_wcsref_file, get_hdu=True, force_wcs=ir_wcs, **mosaic_args['wcs_params']) mosaic_pixfrac = mosaic_args['mosaic_pixfrac'] combine_all_filters = mosaic_args['combine_all_filters'] drizzle_overlaps(root, filters=mosaic_args['ir_filters'], min_nexp=1, pixfrac=mosaic_pixfrac, make_combined=False, ref_image=ir_wcsref_file, ref_wcs=None, include_saturated=fix_stars, multi_driz_cr=(mosaic_driz_cr_type & 1) > 0, filter_driz_cr=(mosaic_driz_cr_type & 2) > 0, **mosaic_drizzle_args) make_filter_combinations(root, weight_fnu=True, min_count=1, filter_combinations={'ir': IR_M_FILTERS+IR_W_FILTERS}) # Mask diffraction spikes ir_mosaics = glob.glob('{0}-f*drz_sci.fits'.format(root)) if (len(ir_mosaics) > 0) & (mask_spikes): cat = prep.make_SEP_catalog('{0}-ir'.format(root), threshold=4, save_fits=False, column_case=str.lower) selection = (cat['mag_auto'] < 18) & (cat['flux_radius'] < 4.5) selection |= (cat['mag_auto'] < 15.2) & (cat['flux_radius'] < 20) # Bright GAIA stars to catch things with bad photometry if True: print('## Include GAIA stars in spike mask') ra_center = np.median(cat['ra']) dec_center = np.median(cat['dec']) rad_arcmin = np.sqrt((cat['ra']-ra_center)**2*np.cos(cat['dec']/180*np.pi)**2+(cat['dec']-dec_center)**2)*60 try: gaia_tmp = prep.get_gaia_DR2_catalog(ra_center, dec_center, radius=rad_arcmin.max()*1.1, use_mirror=False) idx, dr = utils.GTable(gaia_tmp).match_to_catalog_sky(cat) gaia_match = (dr.value < 0.5) gaia_match &= (gaia_tmp['phot_g_mean_mag'][idx] < 20) gaia_match &= (cat['mag_auto'] < 17.5) selection |= gaia_match except: print('## Include GAIA stars in spike mask - failed') pass # Note: very bright stars could still be saturated and the spikes # might not be big enough given their catalog mag msg = '\n### mask_spikes: {0} stars\n\n'.format(selection.sum()) utils.log_comment(utils.LOGFILE, msg, show_date=True, verbose=True) if selection.sum() > 0: for visit in visits: filt = visit['product'].split('-')[-1] if filt[:2] in ['f0', 'f1']: mask_IR_psf_spikes(visit=visit, selection=selection, cat=cat, minR=8, dy=5) # Remake mosaics drizzle_overlaps(root, filters=mosaic_args['ir_filters'], min_nexp=1, pixfrac=mosaic_pixfrac, make_combined=False, ref_image=ir_wcsref_file, ref_wcs=None, include_saturated=fix_stars, **mosaic_drizzle_args) make_filter_combinations(root, weight_fnu=True, min_count=1, filter_combinations={'ir':IR_M_FILTERS+IR_W_FILTERS}) # More IR filter combinations for mosaics if False: extra_combinations = {'h': ['F140W', 'F160W'], 'yj': ['F098M', 'F105W', 'F110W', 'F125W']} make_filter_combinations(root, weight_fnu=True, min_count=2, filter_combinations=extra_combinations) # Optical filters mosaics = glob.glob('{0}-ir_dr?_sci.fits'.format(root)) if (mosaic_args['half_optical_pixscale']): # & (len(mosaics) > 0): # Drizzle optical images to half the pixel scale determined for # the IR mosaics. The optical mosaics can be 2x2 block averaged # to match the IR images. ref = pyfits.open(ir_wcsref_file) if len(ref) > 1: _ir_wcs = pywcs.WCS(ref[1].header) else: _ir_wcs = pywcs.WCS(ref[0].header) opt_wcs = utils.half_pixel_scale(_ir_wcs) h = utils.to_header(opt_wcs) opt_wcsref_file = f'{root}-opt_wcs-ref.fits' data = np.zeros((h['NAXIS2'], h['NAXIS1']), dtype=np.int16) pyfits.writeto(opt_wcsref_file, header=h, data=data, overwrite=True) else: opt_wcsref_file = ir_wcsref_file if len(mosaics) == 0: # Call a single combined mosaic "ir" for detection catalogs, etc. make_combined_label = 'ir' else: # Make a separate optical combined image make_combined_label = 'opt' drizzle_overlaps(root, filters=mosaic_args['optical_filters'], pixfrac=mosaic_pixfrac, make_combined=False, ref_image=opt_wcsref_file, ref_wcs=None, min_nexp=1+skip_single_optical_visits*1, multi_driz_cr=(mosaic_driz_cr_type & 4) > 0, filter_driz_cr=(mosaic_driz_cr_type & 8) > 0, **mosaic_drizzle_args) make_filter_combinations(root, weight_fnu=True, min_count=1, filter_combinations={make_combined_label: OPT_M_FILTERS+OPT_W_FILTERS}) # Fill IR filter mosaics with scaled combined data so they can be used # as grism reference fill_mosaics = mosaic_args['fill_mosaics'] if fill_mosaics: if fill_mosaics == 'grism': # Only fill mosaics if grism filters exist if 'HAS_GRISM' in info.meta: has_grism = info.meta['HAS_GRISM'] else: has_grism = False if has_grism: fill_filter_mosaics(root) else: fill_filter_mosaics(root) # Remove the WCS reference files for file in [opt_wcsref_file, ir_wcsref_file]: if file is not None: if os.path.exists(file): os.remove(file)
[docs]def make_mosaic_footprints(field_root): """ Make region files where wht images nonzero """ import matplotlib.pyplot as plt files = glob.glob('{0}-f*dr?_wht.fits'.format(field_root)) files.sort() fp = open('{0}_mosaic.reg'.format(field_root), 'w') fp.write('fk5\n') fp.close() for weight_image in files: filt = weight_image.split('_dr')[0].split('-')[-1] wave = filt[1:4] if wave[0] in '01': w = float(wave)*10 else: w = float(wave) wint = np.clip(np.interp(np.log10(w/800), [-0.3, 0.3], [0, 1]), 0, 1) print(filt, w, wint) clr = utils.RGBtoHex(plt.cm.Spectral_r(wint)) #plt.scatter([0],[0], color=clr, label=filt) reg = prep.drizzle_footprint(weight_image, shrink=10, ext=0, outfile=None, label=filt) + ' color={0}\n'.format(clr) fp = open('{0}_mosaic.reg'.format(field_root), 'a') fp.write(reg) fp.close()
[docs]def fill_filter_mosaics(field_root): """ Fill field mosaics with the average value taken from other filters so that all images have the same coverage Parameters ---------- field_root : str """ import glob import os import scipy.ndimage as nd import astropy.io.fits as pyfits mosaic_files = glob.glob('{0}-ir_dr?_sci.fits'.format(field_root)) mosaic_files += glob.glob('{0}-opt_dr?_sci.fits'.format(field_root)) if len(mosaic_files) == 0: return False ir = pyfits.open(mosaic_files[0]) filter_files = glob.glob('{0}-f[01]*sci.fits'.format(field_root)) # If not IR filters, try optical if len(filter_files) == 0: filter_files = glob.glob('{0}-f[5-8]*sci.fits'.format(field_root)) for file in filter_files: print(file) sci = pyfits.open(file, mode='update') wht = pyfits.open(file.replace('sci', 'wht')) mask = wht[0].data == 0 scale = ir[0].header['PHOTFLAM']/sci[0].header['PHOTFLAM'] sci[0].data[mask] = ir[0].data[mask]*scale sci.flush() # Fill empty parts of IR mosaic with optical if both available if len(mosaic_files) == 2: print('Fill -ir- mosaic with -opt-') ir_sci = pyfits.open(mosaic_files[0], mode='update') ir_wht = pyfits.open(mosaic_files[0].replace('sci', 'wht'), mode='update') opt_sci = pyfits.open(mosaic_files[1]) opt_wht = pyfits.open(mosaic_files[1].replace('sci', 'wht')) opt_sci_data = opt_sci[0].data opt_wht_data = opt_wht[0].data if opt_sci_data.shape[0] == 2*ir_wht[0].data.shape[0]: # Half pixel scale kern = np.ones((2, 2)) num = nd.convolve(opt_sci_data*opt_wht_data, kern)[::2, ::2] den = nd.convolve(opt_wht_data, kern)[::2, ::2] opt_sci_data = num/den opt_sci_data[den <= 0] = 0 opt_wht_data = den mask = ir_wht[0].data == 0 scale = opt_sci[0].header['PHOTFLAM']/ir_sci[0].header['PHOTFLAM'] ir_sci[0].data[mask] = opt_sci_data[mask]*scale ir_wht[0].data[mask] = opt_wht_data[mask]/scale**2 ir_sci.flush() ir_wht.flush() return True
###################### # Objective function for catalog shifts def _objfun_align(p0, tab, ref_tab, ref_err, shift_only, ret): #from grizli.utils import transform_wcs from scipy.special import huber from scipy.stats import t as student from scipy.stats import norm import numpy as np import matplotlib.pyplot as plt from ..utils import transform_wcs N = len(tab) trans = np.reshape(p0, (N, -1)) # /10. #trans[0,:] = [0,0,0,1] sh = trans.shape if sh[1] == 2: # Shift only pscl = np.array([10., 10.]) trans = np.hstack([trans/pscl, np.zeros((N, 1)), np.ones((N, 1))]) elif sh[1] == 3: # Shift + rot pscl = np.array([10., 10., 100.]) trans = np.hstack([trans/pscl, np.ones((N, 1))]) elif sh[1] == 4: # Shift + rot + scale pscl = np.array([10., 10., 100., 100]) trans = trans/pscl print(trans) #N = trans.shape[0] trans_wcs = {} trans_rd = {} for ix, i in enumerate(tab): if (ref_err > 0.1) & (ix == 0): trans_wcs[i] = transform_wcs(tab[i]['wcs'], translation=[0, 0], rotation=0., scale=1.) trans_rd[i] = trans_wcs[i].all_pix2world(tab[i]['xy'], 1) else: trans_wcs[i] = transform_wcs(tab[i]['wcs'], translation=list(trans[ix, :2]), rotation=trans[ix, 2]/180*np.pi, scale=trans[ix, 3]) trans_rd[i] = trans_wcs[i].all_pix2world(tab[i]['xy'], 1) # Cosine declination factor cosd = np.cos(np.median(trans_rd[i][:, 1]/180*np.pi)) if ret == 'field': for ix, i in enumerate(tab): print(tab[i]['wcs']) plt.scatter(trans_rd[i][:, 0], trans_rd[i][:, 1], alpha=0.8, marker='x') continue for m in tab[i]['match_idx']: ix, jx = tab[i]['match_idx'][m] if m < 0: continue else: # continue dx_i = (trans_rd[i][ix, 0] - trans_rd[m][jx, 0])*3600.*cosd dy_i = (trans_rd[i][ix, 1] - trans_rd[m][jx, 1])*3600. for j in range(len(ix)): if j == 0: p = plt.plot(trans_rd[i][j, 0]+np.array([0, dx_i[j]/60.]), trans_rd[i][j, 1]+np.array([0, dy_i[j]/60.]), alpha=0.8) c = p[0].get_color() else: p = plt.plot(trans_rd[i][j, 0]+np.array([0, dx_i[j]/60.]), trans_rd[i][j, 1]+np.array([0, dy_i[j]/60.]), alpha=0.8, color=c) return True trans_wcs = {} trans_rd = {} for ix, i in enumerate(tab): trans_wcs[i] = transform_wcs(tab[i]['wcs'], translation=list(trans[ix, :2]), rotation=trans[ix, 2]/180*np.pi, scale=trans[ix, 3]) trans_rd[i] = trans_wcs[i].all_pix2world(tab[i]['xy'], 1) dx, dy = [], [] for i in tab: mcount = 0 for m in tab[i]['match_idx']: ix, jx = tab[i]['match_idx'][m] if m < 0: continue else: # continue dx_i = (trans_rd[i][ix, 0] - trans_rd[m][jx, 0])*3600.*cosd dy_i = (trans_rd[i][ix, 1] - trans_rd[m][jx, 1])*3600. mcount += len(dx_i) dx.append(dx_i/0.01) dy.append(dy_i/0.01) if ret == 'plot': plt.gca().scatter(dx_i, dy_i, marker='.', alpha=0.1) # Reference sources if -1 in tab[i]['match_idx']: m = -1 ix, jx = tab[i]['match_idx'][m] dx_i = (trans_rd[i][ix, 0] - tab[i]['ref_tab']['ra'][jx])*3600.*cosd dy_i = (trans_rd[i][ix, 1] - tab[i]['ref_tab']['dec'][jx])*3600. rcount = len(dx_i) mcount = np.maximum(mcount, 1) rcount = np.maximum(rcount, 1) dx.append(dx_i/(ref_err/np.clip(mcount/rcount, 1, 1000))) dy.append(dy_i/(ref_err/np.clip(mcount/rcount, 1, 1000))) if ret.startswith('plotx') & (ref_err < 0.1): plt.gca().scatter(dx_i, dy_i, marker='+', color='k', alpha=0.3, zorder=1000) # Residuals dr = np.sqrt(np.hstack(dx)**2+np.hstack(dy)**2) if ret == 'huber': # Minimize Huber loss function loss = huber(1, dr).sum()*2 return loss elif ret == 'student': # student-t log prob (maximize) df = 2.5 # more power in wings than normal lnp = student.logpdf(dr, df, loc=0, scale=1).sum() return lnp else: # Normal log prob (maximize) lnp = norm.logpdf(dr, loc=0, scale=1).sum() return lnp
[docs]def get_rgb_filters(filter_list, force_ir=False, pure_sort=False): """ Compute which filters to use to make an RGB cutout Parameters ---------- filter_list : list All available filters force_ir : bool Only use IR filters. pure_sort : bool Don't use preference for red filters, just use order they appear Returns ------- rgb_filt : [r, g, b] List of filters to use """ from collections import OrderedDict # Sort by wavelength for_sort = OrderedDict() use_filters = [] ir_filters = [] # Preferred combinations filter_list_lower = [f.lower() for f in filter_list] rpref = ['h', 'f160w', 'f140w','f444w-clear','f410m-clear', 'f356w-clear','f277w-clear','f200w-clear','f150w-clear'] gpref = ['j', 'yj', 'f125w', 'f110w', 'f105w', 'f098m','f277w-clear', 'f356w-clear','f200w-clear', 'f150w-clear','f115w-clear', 'f410m-clear','f300m-clear', ] bpref = ['opt', 'visr', 'visb', 'f814w', 'f814wu', 'f606w', 'f606wu', 'f775w', 'f850lp', 'f435w', 'f115w-clear','f090w-clear','f070w-clear', 'f277w-clear','f150w-clear' ] pref_list = [None, None, None] has_pref = 0 for i, pref in enumerate([rpref, gpref, bpref]): for f in pref: if (f in filter_list_lower) & (f not in pref_list): pref_list[i] = f has_pref += 1 break if has_pref == 3: print(f'# field_rgb - Use preferred r/g/b combination: {pref_list}') return pref_list for f in filter_list: if f == 'ir': continue elif f == 'opt': continue if f == 'uv': val = 'f00300' elif f == 'visb': val = 'f00435' elif f == 'visr': val = 'f00814' elif f == 'y': val = 'f01000' elif f == 'yj': val = 'f01100' elif f == 'j': val = 'f01250' elif f == 'h': val = 'f01500' elif 'clear' in f: val = 'f0'+f[1:4]+'0' elif f in ['f560w','f770w']: val = 'f0'+f[1:4] elif f in ['f1000w','f1130w','f1280w','f1500w','f1800w', 'f2100w','f2550w']: val = f[:5]+'0' elif f[1] in '01': val = 'f0'+f[1:4]+'0' else: val = 'f00'+f[1:4] # Red filters (>6000) if val > 'f07': if (val >= 'v09') & (force_ir): ir_filters.append(f) use_filters.append(f) for_sort[f] = val pop_indices = [] joined = {'uv': '23', 'visb': '45', 'visr': '678', 'y': ['f098m', 'f105w', 'f070w','f090w'], 'j': ['f110w', 'f125w','f115w'], 'h': ['f140w', 'f160w','f150w']} for j in joined: if j in use_filters: indices = [] for f in use_filters: if f in joined: continue if j in 'yjh': if f in joined[j]: indices.append(use_filters.index(f)) else: if f[1] in joined[j]: indices.append(use_filters.index(f)) if len(indices) == len(use_filters)-1: # All filters are in a given group so pop the group pop_indices.append(use_filters.index(j)) else: pop_indices.extend(indices) pop_indices.sort() for i in pop_indices[::-1]: filt_i = use_filters.pop(i) for_sort.pop(filt_i) # Only one filter if len(use_filters) == 1: f = use_filters[0] return [f, f, f] if len(filter_list) == 1: f = filter_list[0] return [f, f, f] if (len(use_filters) == 0) & (len(filter_list) > 0): so = np.argsort(filter_list) f = filter_list[so[-1]] return [f, f, f] # Preference for red filters if (len(ir_filters) >= 3) & (not pure_sort): use_filters = ir_filters for k in list(for_sort.keys()): if k not in ir_filters: p = for_sort.pop(k) so = np.argsort(list(for_sort.values())) waves = np.asarray([for_sort[f][1:] for f in for_sort],dtype=float) # Reddest rfilt = use_filters[so[-1]] # Bluest bfilt = use_filters[so[0]] if len(use_filters) == 2: return [rfilt, 'sum', bfilt] elif len(use_filters) == 3: gfilt = use_filters[so[1]] return [rfilt, gfilt, bfilt] else: # Closest to average wavelength mean = np.mean([waves.max(), waves.min()]) ix_g = np.argmin(np.abs(waves-mean)) gfilt = use_filters[ix_g] return [rfilt, gfilt, bfilt]
TICKPARAMS = dict(axis='both', colors='w', which='both') IMSAVE_QUALITY = 95 # Good options for asinh norm_kwargs ASINH_NORM = {'stretch': 'asinh', 'min_cut': -0.02, 'max_cut': 1.0, 'clip':True, 'asinh_a':0.03}
[docs]def field_rgb(root='j010514+021532', xsize=8, output_dpi=None, HOME_PATH='./', show_ir=True, pl=1, pf=1, scl=1, scale_ab=None, rgb_scl=[1, 1, 1], ds9=None, force_ir=False, filters=None, add_labels=True, output_format='jpg', rgb_min=-0.01, xyslice=None, pure_sort=False, verbose=True, force_rgb=None, suffix='.field', mask_empty=False, tick_interval=60, timestamp=False, mw_ebv=0, use_background=False, tickparams=TICKPARAMS, fill_black=False, ref_spectrum=None, gzext='', full_dimensions=False, use_imsave=False, invert=False, get_rgb_array=False, get_images=False, norm_kwargs=None): """ RGB image of the field mosaics Parameters ---------- root : str Field rootname xsize : float Figure size output_dpi : int Figure DPI HOME_PATH : str Path to look for mosaic files show_ir : bool Clip around WFC3/IR pl : float Images are scaled by a factor `PHOTPLAM**pl` pf : float Images are scaled by a factor `PHOTFLAM**pf`. Flat f-nu would be `pl=2`, `pf=1`. scl : float All images are scaled by this factor scale_ab : float rgb_scl : [float, float, float] Separate scaling for [r,g,b] channels ds9 : `grizli.ds9.DS9` Load arrays in DS9 force_ir : bool filters : list Specific list of filters add_labels : bool Add labels to the plot verbose : bool Status messaging force_rgb : list Filenames of specific [r,g,b] images suffix : str Suffix of the output figure norm_kwargs : dict Keyword arguments for `astropy.visualization.simple_norm`, e.g., ``{'stretch': 'asinh', 'min_cut': -0.05, 'max_cut': 0.1}`` """ import matplotlib.pyplot as plt from matplotlib.ticker import MultipleLocator import skimage #import montage_wrapper from astropy.visualization import make_lupton_rgb from astropy.visualization import simple_norm try: from .. import utils except: from grizli import utils if HOME_PATH is not None: phot_file = f'{HOME_PATH}/{root}/Prep/{root}_phot.fits' if not os.path.exists(phot_file): print(f'Photometry file {phot_file} not found.') return False phot = utils.GTable.gread(phot_file) PATH_TO = f'{HOME_PATH}/{root}/Prep' sci_files = glob.glob(f'{PATH_TO}/{root}-[ofuvyjh]*sci.fits{gzext}') else: PATH_TO = './' sci_files = glob.glob(f'./{root}-[fuvyjho]*sci.fits{gzext}') print(f'PATH: {PATH_TO}, files: {sci_files}') if filters is None: filters = [file.replace('-clear','xclear').replace('clear-','clearx').split('_')[-3].split('-')[-1] for file in sci_files] filters = [f.replace('xclear','-clear').replace('clearx','clear-') for f in filters] if show_ir: filters += ['ir'] #mag_auto = 23.9-2.5*np.log10(phot['flux_auto']) ims = {} for f in filters: try: img = glob.glob(f'{PATH_TO}/{root}-{f}_dr?_sci.fits{gzext}')[0] except: print(f'Failed: {PATH_TO}/{root}-{f}_dr?_sci.fits{gzext}') try: ims[f] = pyfits.open(img) if 'IMGMED' in ims[f][0].header: imgmed = ims[f][0].header['IMGMED'] ims[f][0].data -= imgmed else: imgmed = 0 bkg_file = img.split('_dr')[0]+'_bkg.fits' if use_background & os.path.exists(bkg_file): print('Subtract background: '+bkg_file) bkg = pyfits.open(bkg_file) ims[f][0].data -= bkg[0].data - imgmed except: continue filters = list(ims.keys()) wcs = pywcs.WCS(ims[filters[-1]][0].header) pscale = utils.get_wcs_pscale(wcs) minor = MultipleLocator(tick_interval/pscale) if force_rgb is None: rf, gf, bf = get_rgb_filters(filters, force_ir=force_ir, pure_sort=pure_sort) else: rf, gf, bf = force_rgb _rgbf = [rf, gf, bf] _rgb_auto = False if rgb_scl == [1, 1, 1]: if (_rgbf == ['f444w-clear', 'f356w-clear', 'f277w-clear']): rgb_scl = [2.7, 2.0, 1.0] elif _rgbf == ['f200w-clear', 'f150w-clear', 'f115w-clear']: rgb_scl = [1.1, 1., 1.0] elif _rgbf == ['f444w-clear', 'f356w-clear', 'f115w-clear']: rgb_scl = [1.4, 1., 0.35] elif _rgbf == ['f444w-clear', 'f356w-clear', 'f090w-clear']: rgb_scl = [1.4, 1., 0.35] elif _rgbf == ['f444w-clear', 'f356w-clear', 'f150w-clear']: rgb_scl = [1.4, 1., 0.35] elif _rgbf == ['f444w-clear', 'f356w-clear', 'f200w-clear']: rgb_scl = [1.4, 1., 0.35] elif _rgbf == ['f444w-clear','f200w-clear','f115w-clear']: rgb_scl = [2, 1.1, 1.0] elif _rgbf == ['f444w-clear','f200w-clear','f115w-clear']: rgb_scl = [2, 1.1, 1.0] elif _rgbf == ['f356w-clear','f200w-clear','f115w-clear']: rgb_scl = [2, 1.1, 1.0] elif _rgbf == ['f444w-clear','f277w-clear','f115w-clear']: rgb_scl = [2, 1.5, 1.0] else: # Mix of SW/LW: [LW=2, SW=1] rgb_scl = [1,1,1] clear = np.array(['clear' in f for f in _rgbf]) lw = np.array(_rgbf) > 'f260w' if clear.sum() == 3: rgb_scl = (lw*1+1) rgb_scl = (rgb_scl/rgb_scl.min()).tolist() logstr = '# field_rgb {0}: r {1} / g {2} / b {3}\n' logstr += '# field_rgb scl={7:.2f} / r {4:.2f} / g {5:.2f} / b {6:.2f}' logstr = logstr.format(root, *_rgbf, *rgb_scl, scl) utils.log_comment(utils.LOGFILE, logstr, verbose=verbose) #pf = 1 #pl = 1 if scale_ab is not None: zp_r = utils.calc_header_zeropoint(ims[rf], ext=0) scl = 10**(-0.4*(zp_r-5-scale_ab)) scl *= (0.06/pscale)**2 if mw_ebv > 0: MW_F99 = utils.MW_F99(mw_ebv*utils.MW_RV, r_v=utils.MW_RV) else: MW_F99 = None rimg = ims[rf][0].data * (ims[rf][0].header['PHOTFLAM']/5.e-20)**pf rimg *= (ims[rf][0].header['PHOTPLAM']/1.e4)**pl*scl*rgb_scl[0] if MW_F99 is not None: rmw = 10**(0.4*(MW_F99(np.array([ims[rf][0].header['PHOTPLAM']]))))[0] print(f'MW_EBV={mw_ebv:.3f}, {rf}: {rmw:.2f}') rimg *= rmw if bf == 'sum': bimg = rimg elif bf == rf: bimg = rimg else: bimg = ims[bf][0].data * (ims[bf][0].header['PHOTFLAM']/5.e-20)**pf bimg *= (ims[bf][0].header['PHOTPLAM']/1.e4)**pl*scl*rgb_scl[2] if MW_F99 is not None: plam = ims[bf][0].header['PHOTPLAM'] bmw = 10**(0.4*(MW_F99(np.array([plam]))))[0] print(f'MW_EBV={mw_ebv:.3f}, {bf}: {bmw:.2f}') bimg *= bmw # Double-acs if bimg.shape != rimg.shape: import scipy.ndimage as nd kern = np.ones((2, 2)) bimg = nd.convolve(bimg, kern)[::2, ::2] if gf == 'sum': gimg = (rimg+bimg)/2. elif gf == rf: gimg = rimg elif gf == bf: gimg = bimg else: gscl = (ims[gf][0].header['PHOTFLAM']/5.e-20)**pf gscl *= (ims[gf][0].header['PHOTPLAM']/1.e4)**pl gimg = ims[gf][0].data * gscl * scl * rgb_scl[1] # * 1.5 if MW_F99 is not None: plam = ims[gf][0].header['PHOTPLAM'] gmw = 10**(0.4*(MW_F99(np.array([plam]))))[0] print(f'MW_EBV={mw_ebv:.3f}, {gf}: {gmw:.2f}') gimg *= gmw rmsk = rimg == 0 gmsk = gimg == 0 bmsk = bimg == 0 if gimg.shape != rimg.shape: import scipy.ndimage as nd kern = np.ones((2, 2)) gimg = nd.convolve(gimg, kern)[::2, ::2] gmsk = gmsk[::2,::2] # Scale by reference synphot spectrum if ref_spectrum is not None: import pysynphot as S try: _obsm = [utils.get_filter_obsmode(filter=_f) for _f in [rf, gf, bf]] _bp = [S.ObsBandpass(_m) for _m in _obsm] _bpf = [ref_spectrum.integrate_filter(_b)/_b.pivot()**2 for _b in _bp] gimg *= _bpf[0]/_bpf[1] bimg *= _bpf[0]/_bpf[2] msg = 'ref_spectrum supplied: {0}*{1:.2f} {2}*{3:.2f}' print(msg.format(gf, _bpf[0]/_bpf[1], bf, _bpf[0]/_bpf[2])) except: pass if mask_empty: mask = rmsk | gmsk | bmsk print(f'Mask empty pixels in any channel: {mask.sum()}') rimg[mask] = 0 gimg[mask] = 0 bimg[mask] = 0 if ds9: ds9.set('rgb') ds9.set('rgb channel red') wcs_header = utils.to_header(pywcs.WCS(ims[rf][0].header)) ds9.view(rimg, header=wcs_header) ds9.set_defaults() ds9.set('cmap value 9.75 0.8455') ds9.set('rgb channel green') ds9.view(gimg, wcs_header) ds9.set_defaults() ds9.set('cmap value 9.75 0.8455') ds9.set('rgb channel blue') ds9.view(bimg, wcs_header) ds9.set_defaults() ds9.set('cmap value 9.75 0.8455') ds9.set('rgb channel red') ds9.set('rgb lock colorbar') gc.collect() for k in ims: ims[k].close() return False xsl = ysl = None if show_ir & (not full_dimensions): # Show only area where IR is available yp, xp = np.indices(ims[rf][0].data.shape) wht = pyfits.open(ims[rf].filename().replace('_sci', '_wht')) mask = wht[0].data > 0 xsl = slice(xp[mask].min(), xp[mask].max()) ysl = slice(yp[mask].min(), yp[mask].max()) rimg = rimg[ysl, xsl] bimg = bimg[ysl, xsl] gimg = gimg[ysl, xsl] if fill_black: rmsk = rmsk[ysl, xsl] gmsk = gmsk[ysl, xsl] bmsk = bmsk[ysl, xsl] else: if xyslice is not None: xsl, ysl = xyslice rimg = rimg[ysl, xsl] bimg = bimg[ysl, xsl] gimg = gimg[ysl, xsl] if fill_black: rmsk = rmsk[ysl, xsl] gmsk = gmsk[ysl, xsl] bmsk = bmsk[ysl, xsl] if get_images: gc.collect() for k in ims: ims[k].close() return (rimg, gimg, bimg), (rf, gf, bf) if norm_kwargs is None: image = make_lupton_rgb(rimg, gimg, bimg, stretch=0.1, minimum=rgb_min) if invert: image = 255-image else: msg = f'# field_rgb norm with {norm_kwargs}' utils.log_comment(utils.LOGFILE, msg, verbose=verbose) sh = rimg.shape image = np.zeros((sh[0], sh[1], 3)) image[:,:,0] = rimg image[:,:,1] = gimg image[:,:,2] = bimg norm = simple_norm(image, **norm_kwargs) image = norm(image).filled(0) if invert: image = 255 - np.clip(np.asarray(image*255,dtype=int), 0, 255) if fill_black: image[rmsk,0] = 0 image[gmsk,1] = 0 image[bmsk,2] = 0 if get_rgb_array: gc.collect() for k in ims: ims[k].close() return image sh = image.shape ny, nx, _ = sh if full_dimensions: # Turn off interactive plotting plt.ioff() dpi = int(nx/xsize) xsize = nx/dpi elif (output_dpi is not None): xsize = nx/output_dpi dpi = output_dpi else: dpi = output_dpi dim = [xsize, xsize/nx*ny] if not use_imsave: fig, ax = plt.subplots(1,1, figsize=dim, dpi=dpi) ax.imshow(image, origin='lower', extent=(-nx/2, nx/2, -ny/2, ny/2)) ax.set_xticklabels([]) ax.set_yticklabels([]) ax.xaxis.set_major_locator(minor) ax.yaxis.set_major_locator(minor) #ax.tick_params(axis='x', colors='w', which='both') #ax.tick_params(axis='y', colors='w', which='both') if tickparams: ax.tick_params(**tickparams) if add_labels: ax.text(0.03, 0.97, root, bbox=dict(facecolor='w', alpha=0.8), size=10, ha='left', va='top', transform=ax.transAxes) ax.text(0.06+0.08*2, 0.02, rf, color='r', bbox=dict(facecolor='w', alpha=1), size=8, ha='center', va='bottom', transform=ax.transAxes) ax.text(0.06+0.08, 0.02, gf, color='g', bbox=dict(facecolor='w', alpha=1), size=8, ha='center', va='bottom', transform=ax.transAxes) ax.text(0.06, 0.02, bf, color='b', bbox=dict(facecolor='w', alpha=1), size=8, ha='center', va='bottom', transform=ax.transAxes) if timestamp: fig.text(0.97, 0.03, time.ctime(), ha='right', va='bottom', fontsize=5, transform=fig.transFigure, color='w') else: fig = None if full_dimensions: if use_imsave: skimage.io.imsave(f'{root}{suffix}.{output_format}', image[::-full_dimensions*1,::full_dimensions*1,:], plugin='pil', quality=IMSAVE_QUALITY) else: ax.axis('off') fig.tight_layout(pad=0) dpi = int(nx/xsize/full_dimensions) fig.savefig(f'{root}{suffix}.{output_format}', dpi=dpi) plt.close(fig) else: fig.tight_layout(pad=0.1) fig.savefig(f'{root}{suffix}.{output_format}') gc.collect() for k in ims: ims[k].close() return xsl, ysl, (rf, gf, bf), fig
######### THUMB_RGB_PARAMS = {'xsize': 4, 'output_dpi': None, 'rgb_min': -0.01, 'add_labels': False, 'output_format': 'png', 'show_ir': False, 'scl': 2, 'suffix': '.rgb', 'mask_empty': False, 'tick_interval': 1, 'pl': 1, # 1 for f_lambda, 2 for f_nu } DRIZZLER_ARGS = {'aws_bucket': False, 'scale_ab': 21.5, 'subtract_median': False, 'theta': 0., 'pixscale': 0.1, 'pixfrac': 0.33, 'kernel': 'square', 'half_optical_pixscale': True, 'filters': ['f160w', 'f814w', 'f140w', 'f125w', 'f105w', 'f110w', 'f098m', 'f850lp', 'f775w', 'f606w', 'f475w', 'f555w', 'f600lp', 'f390w', 'f350lp'], 'size': 3, 'thumb_height': 1.5, 'rgb_params': THUMB_RGB_PARAMS, 'remove': False, 'include_ir_psf': True, 'combine_similar_filters': False, 'single_output': True}
[docs]def make_rgb_thumbnails(root='j140814+565638', ids=None, maglim=21, drizzler_args=DRIZZLER_ARGS, use_line_wcs=False, remove_fits=False, skip=True, min_filters=2, auto_size=False, size_limits=[4, 15], mag=None, make_segmentation_figure=True): """ Make RGB thumbnails in working directory """ import matplotlib.pyplot as plt import astropy.wcs as pywcs from grizli.aws import aws_drizzler phot_cat = glob.glob('../Prep/{0}_phot.fits'.format(root))[0] cat = utils.read_catalog(phot_cat) if make_segmentation_figure: plt.ioff() seg_files = glob.glob('../*/{0}*seg.fits*'.format(root)) if len(seg_files) == 0: make_segmentation_figure = False else: seg = pyfits.open(seg_files[0]) seg_data = seg[0].data seg_wcs = pywcs.WCS(seg[0].header) # Randomize seg to get dispersion between neighboring objects np.random.seed(hash(root) % (10 ** 8)) rnd_ids = np.append([0], np.argsort(np.random.rand(len(cat)))+1) #rnd_seg = rnd_ids[seg[0].data] #phot_xy = seg_wcs.all_world2pix(cat['ra'], cat['dec'], 0) # Count filters num_filters = 0 for k in cat.meta: if k.startswith('F') & k.endswith('uJy2dn'): num_filters += 1 if min_filters > num_filters: print('# make_rgb_thumbnails: only {0} filters found'.format(num_filters)) return False if mag is None: auto_mag = 23.9-2.5*np.log10(cat['flux_auto']*cat['tot_corr']) # More like surface brightness try: mag = 23.9-2.5*np.log10(cat['flux_aper_2']) mag[~np.isfinite(mag)] = auto_mag[~np.isfinite(mag)] except: mag = auto_mag pixel_scale = cat.meta['ASEC_0']/cat.meta['APER_0'] sx = (cat['xmax']-cat['xmin'])*pixel_scale sy = (cat['ymax']-cat['ymin'])*pixel_scale #lim_mag = 23.9-2.5*np.log10(200*np.percentile(cat['fluxerr_aper_4'], 50)) #print('limiting mag: ', lim_mag) lim_mag = 22.8 extracted_ids = False if ids is None: ids = cat['id'][mag < maglim] elif ids == 'extracted': extracted_ids = True # Make thumbnails for extracted objects beams_files = glob.glob('../Extractions/*beams.fits') if len(beams_files) == 0: return False beams_files.sort() ids = [int(os.path.basename(file).split('_')[-1].split('.beams')[0]) for file in beams_files] for id_column in ['id', 'number']: if id_column in cat.colnames: break args = drizzler_args.copy() N = len(ids) for i, id in enumerate(ids): ix = cat[id_column] == id label = '{0}_{1:05d}'.format(root, id) thumb_files = glob.glob('../*/{0}.thumb.png'.format(label)) if (skip) & (len(thumb_files) > 0): print('\n##\n## RGB thumbnail {0} ({1}/{2})\n##'.format(label, i+1, N)) continue args['scale_ab'] = np.clip(mag[ix][0]-1, 17, lim_mag) # Use drizzled line image for WCS? if use_line_wcs: line_file = glob.glob('../Extractions/{0}.full.fits'.format(label)) # Reset if 'wcs' in args: args.pop('wcs') for k in ['pixfrac', 'kernel']: if k in drizzler_args: args[k] = drizzler_args[k] # Find line extrension msg = '\n# Use WCS from {0}[{1},{2}] (pixfrac={3:.2f}, kernel={4})' if len(line_file) > 0: full = pyfits.open(line_file[0]) for ext in full: if 'EXTNAME' in ext.header: if ext.header['EXTNAME'] == 'LINE': try: wcs = pywcs.WCS(ext.header) args['wcs'] = wcs args['pixfrac'] = ext.header['PIXFRAC'] args['kernel'] = ext.header['DRIZKRNL'] print(msg.format(line_file[0], ext.header['EXTNAME'], ext.header['EXTVER'], args['pixfrac'], args['kernel'])) except: pass break if (auto_size) & ('wcs' not in args): s_i = np.maximum(sx[ix][0], sy[ix][0]) args['size'] = np.ceil(np.clip(s_i, size_limits[0], size_limits[1])) print('\n##\n## RGB thumbnail {0} *size={3}* ({1}/{2})\n##'.format(label, i+1, N, args['size'])) else: print('\n##\n## RGB thumbnail {0} ({1}/{2})\n##'.format(label, i+1, N)) aws_drizzler.drizzle_images(label=label, ra=cat['ra'][ix][0], dec=cat['dec'][ix][0], master='local', single_output=True, make_segmentation_figure=False, **args) files = glob.glob('{0}.thumb.fits'.format(label)) blot_seg = None if (make_segmentation_figure) & (len(files) > 0): th = pyfits.open(files[0], mode='update') th_wcs = pywcs.WCS(th[0].header) blot_seg = utils.blot_nearest_exact(seg_data, seg_wcs, th_wcs, stepsize=-1, scale_by_pixel_area=False) rnd_seg = rnd_ids[np.asarray(blot_seg,dtype=int)]*1. th_ids = np.unique(blot_seg) sh = th[0].data.shape yp, xp = np.indices(sh) thumb_height = 2. fig = plt.figure(figsize=[thumb_height*sh[1]/sh[0], thumb_height]) ax = fig.add_subplot(111) rnd_seg[rnd_seg == 0] = np.nan ax.imshow(rnd_seg, aspect='equal', cmap='terrain_r', vmin=-0.05*len(cat), vmax=1.05*len(cat)) ax.set_xticklabels([]) ax.set_yticklabels([]) ix = utils.column_values_in_list(cat['number'], th_ids) xc, yc = th_wcs.all_world2pix(cat['ra'][ix], cat['dec'][ix], 0) xc = np.clip(xc, 0.09*sh[1], 0.91*sh[1]) yc = np.clip(yc, 0.08*sh[0], 0.92*sh[0]) for th_id, x_i, y_i in zip(cat['number'][ix], xc, yc): if th_id == 0: continue ax.text(x_i, y_i, '{0:.0f}'.format(th_id), ha='center', va='center', fontsize=8, color='w') ax.text(x_i, y_i, '{0:.0f}'.format(th_id), ha='center', va='center', fontsize=8, color='k', alpha=0.95) ax.set_xlim(0, sh[1]-1) ax.set_ylim(0, sh[0]-1) ax.set_axis_off() fig.tight_layout(pad=0.01) fig.savefig('{0}.seg.png'.format(label)) plt.close(fig) # Append to thumbs file seg_hdu = pyfits.ImageHDU(data=np.asarray(blot_seg,dtype=int), name='SEG') th.append(seg_hdu) th.writeto('{0}.thumb.fits'.format(label), overwrite=True, output_verify='fix') th.close() if remove_fits > 0: files = glob.glob('{0}*_dr[cz]*fits'.format(label)) for file in files: os.remove(file)
[docs]def field_psf(root='j020924-044344', PREP_PATH='../Prep', RAW_PATH='../RAW', EXTRACT_PATH='../Extractions', factors=[1, 2, 4], get_drizzle_scale=True, subsample=256, size=6, get_line_maps=False, raise_fault=False, verbose=True, psf_filters=['F098M', 'F110W', 'F105W', 'F125W', 'F140W', 'F160W'], skip=False, make_fits=True, **kwargs): """ Generate PSFs for the available filters in a given field """ import os import glob import astropy.wcs as pywcs import astropy.io.fits as pyfits try: from .. import utils