multiband_catalog¶
- grizli.pipeline.auto_script.multiband_catalog(field_root='j142724+334246', threshold=1.8, detection_background=True, photometry_background=True, get_all_filters=False, filters=None, det_err_scale=-inf, phot_err_scale=-inf, rescale_weight=True, run_detection=True, detection_filter='ir', detection_root=None, output_root=None, use_psf_filter=True, detection_params={'clean': True, 'clean_param': 1, 'deblend_cont': 0.001, 'deblend_nthresh': 32, 'filter_kernel': array([[0.0049, 0.0213, 0.0513, 0.0687, 0.0513, 0.0213, 0.0049], [0.0213, 0.0921, 0.2211, 0.296 , 0.2211, 0.0921, 0.0213], [0.0513, 0.2211, 0.5307, 0.7105, 0.5307, 0.2211, 0.0513], [0.0687, 0.296 , 0.7105, 0.9511, 0.7105, 0.296 , 0.0687], [0.0513, 0.2211, 0.5307, 0.7105, 0.5307, 0.2211, 0.0513], [0.0213, 0.0921, 0.2211, 0.296 , 0.2211, 0.0921, 0.0213], [0.0049, 0.0213, 0.0513, 0.0687, 0.0513, 0.0213, 0.0049]]), 'filter_type': 'conv', 'minarea': 9}, phot_apertures=[<Quantity 0.36 arcsec>, <Quantity 0.500001 arcsec>, <Quantity 0.7000002 arcsec>, <Quantity 1.0000002 arcsec>, <Quantity 1.2 arcsec>, <Quantity 1.5 arcsec>, <Quantity 3. arcsec>], master_catalog=None, bkg_mask=None, bkg_params={'bh': 64, 'bw': 64, 'fh': 3, 'fw': 3, 'pixel_scale': 0.06}, use_bkg_err=False, aper_segmask=True, sci_image=None, prefer_var_image=True, clean_bkg=True)[source]¶
Make a detection catalog and run aperture photometry on all available filter images with the SourceExtractor clone
sep
.- Parameters
- field_rootstr
Rootname of detection images and individual filter images (and weights).
- thresholdfloat
Detection threshold, see
make_SEP_catalog
.- detection_backgroundbool
Background subtraction on detection image, see
get_background
onmake_SEP_catalog
.- photometry_backgroundbool
Background subtraction when doing photometry on filter images, see
get_background
onmake_SEP_catalog
.- get_all_filtersbool
Find all filter images available for
field_root
- filterslist, None
Explicit list of filters to include, rather than all available
- det_err_scalefloat
Uncertainty scaling for detection image, see
err_scale
onmake_SEP_catalog
.- phot_err_scalefloat
Uncertainty scaling for filter images, see
err_scale
onmake_SEP_catalog
.- rescale_weightbool
Rescale the weight images based on
sep.Background.rms
for both detection and filter images, seegrizli.prep.make_SEP_catalog
.- run_detectionbool
Run the source detection. Can be False if the detection catalog file (
master_catalog
) and segmentation image ({field_root}-{detection_filter}_seg.fits
) already exist, i.e., from a separate call tomake_SEP_catalog
.- detection_filterstr
Filter image to use for the source detection. The default
ir
is the product ofgrizli.pipeline.auto_script.make_filter_combinations
. The detection image filename will be{field_root}-{detection_filter}_drz_sci.fits
and with associated weight image{field_root}-{detection_filter}_drz_wht.fits
.- detection_rootstr, None
Alternative rootname to use for the detection (and weight) image, i.e.,
{detection_root}_drz_sci.fits
. Note that the_drz_sci.fits
suffixes are currently required bymake_SEP_catalog
.- output_rootstr, None
Rootname of the output catalog file to use, if desired other than
field_root
.- use_psf_filterbool
For HST, try to use the PSF as the convolution filter for source detection
- detection_paramsdict
Source detection parameters, see
make_SEP_catalog
. Many of these are analogous to SourceExtractor parameters.- phot_apertureslist
Aperture diameters. If provided as a string, then apertures assumed to be in pixel units. Can also provide a list of elements with astropy.unit attributes, which are converted to pixels given the image WCS/pixel size. See
make_SEP_catalog
.- master_catalogstr, None
Filename of the detection catalog, if None then build as
{field_root}-{detection_filter}.cat.fits
- bkg_maskarray-like, None
Mask to use for the detection and photometry background determination, see
make_SEP_catalog
. This has to be the same dimensions as the images themselves.- bkg_paramsdict
Background parameters, analogous to SourceExtractor, see
make_SEP_catalog
.- use_bkg_errbool
Use the background rms array determined by
sep
for the uncertainties (seesep.Background.rms
).- aper_segmaskbool
Use segmentation masking for the aperture photometry, see
make_SEP_catalog
.- sci_imagearray-like, None
Array itself to use for source detection, see
make_SEP_catalog
.- prefer_var_imagebool
If found, use
_var.fits
image for the full variance that includes the Poisson component
- Returns
- tab
Table
Catalog with detection parameters and aperture photometry. This is essentially the same as the output for
make_SEP_catalog
but with separate photometry columns for each multi-wavelength filter image found.
- tab