drizzle_from_visit¶
- grizli.utils.drizzle_from_visit(visit, output=None, pixfrac=1.0, kernel='point', clean=True, include_saturated=True, keep_bits=None, dryrun=False, skip=None, extra_wfc3ir_badpix=True, verbose=True, scale_photom=True, context='jwst_1130.pmap', weight_type='jwst_var', rnoise_percentile=99, calc_wcsmap=False, niriss_ghost_kwargs={}, snowblind_kwargs=None, jwst_dq_flags=['DO_NOT_USE', 'OTHER_BAD_PIXEL', 'UNRELIABLE_SLOPE', 'UNRELIABLE_BIAS', 'NO_SAT_CHECK', 'NO_GAIN_VALUE', 'HOT', 'WARM', 'DEAD', 'RC', 'LOW_QE'], nircam_hot_pixel_kwargs={}, niriss_hot_pixel_kwargs=None, get_dbmask=True, saturated_lookback=10000.0, write_sat_file=False, sat_kwargs={}, query_persistence_pixels=True, **kwargs)[source]¶
Make drizzle mosaic from exposures in a visit dictionary
- Parameters
- visitdict
Visit dictionary with ‘product’ and ‘files’ keys
- output
WCS
,Header
,ImageHDU
Output frame definition. Can be a WCS object, header, or FITS HDU. If None, then generates a WCS with
grizli.utils.make_maximal_wcs
- pixfracfloat
Drizzle
pixfrac
- kernelstr
Drizzle
kernel
(e.g., ‘point’, ‘square’)- cleanbool
Remove exposure files after adding to the mosaic
- include_saturatedbool
Include pixels with saturated DQ flag
- keep_bitsint, None
Extra DQ bits to keep as valid
- dryrunbool
If True, don’t actually produce the output
- skipint
Slice skip to drizzle a subset of exposures
- extra_wfc3ir_badpixbool
Apply extra WFC3/IR bad pix to DQ
- verbosebool
Some verbose message printing
- scale_photombool
For JWST, apply photometry scale corrections from the
grizli/data/photom_correction.yml
table- contextstr
JWST calibration context to use for photometric scaling
- weight_type‘err’, ‘median_err’, ‘time’, ‘jwst’, ‘jwst_var’, ‘median_variance’
Exposure weighting strategy.
The default ‘err’ strategy uses the full uncertainty array defined in the
ERR
image extensions. The alternativeThe ‘median_err’ strategy uses the median of the
ERR
extensionThe ‘time’ strategy weights ‘median_err’ by the
TIME
extension, if availableFor the ‘jwst’ strategy, if ‘VAR_POISSON’ and ‘VAR_RNOISE’ extensions found, weight by VAR_RNOISE + median(VAR_POISSON). Fall back to ‘median_err’ otherwise.
For ‘jwst_var’, use the weight as in
weight_type='jwst'
but also make a full variance map propagated from theERR
noise model.
- rnoise_percentilefloat
Percentile defining the upper limit of valid
VAR_RNOISE
values, if that extension is found in the exposure files(e.g., for JWST)- calc_wcsmapbool
Calculate and return the WCS map
- get_dbmaskbool
Get the bad pixel mask from the database
- niriss_ghost_kwargsdict
Keyword arguments for
niriss_ghost_mask
- snowblind_kwargsdict
Arguments to pass to
jwst_snowblind_mask
ifsnowblind
hasn’t already been run on JWST exposures- jwst_dq_flagslist
List of JWST flag names to include in the bad pixel mask. To ignore, set to
None
- nircam_hot_pixel_kwargsdict
Keyword arguments for
grizli.jwst_utils.flag_nircam_hot_pixels
. Set toNone
to disable and use the static bad pixel tables.- niriss_hot_pixel_kwargsdict
Keyword arguments for
grizli.jwst_utils.flag_nircam_hot_pixels
when running on NIRISS exposures. Set toNone
to disable and use the static bad pixel tables.- saturated_lookbackfloat
Time, in seconds, to look for saturated pixels in previous exposures that can cause persistence. Skip if
saturated_lookback <= 0
.- write_sat_filebool
Write persistence saturation tables
- sat_kwargsdict
keyword arguments to
get_saturated_pixels
- query_persistence_pixelsbool
Also try to query the full saturated pixel history from the DB with
saturated_lookback
- Returns
- outsciarray-like
SCI array
- outwhtarray-like
Inverse variance WHT array
- outvararray-like
Optional variance array, if the input weights are not explicitly inverse variance
- header
Header
Image header
- flistlist
List of files that were drizzled to the mosaic
- wcs_tab
Table
Table of WCS parameters of individual exposures